• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6
            Minimizing maximizer
            Time Limit: 5000MS Memory Limit: 30000K
            Total Submissions: 1004 Accepted: 280

            Description
            The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs.

            Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer.

            An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values?

            Task
            Write a program that:

            reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline,
            computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data,
            writes the result.

            Input
            The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.

            Output
            The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.

            Sample Input

            40 6
            20 30
            1 10
            10 20
            20 30
            15 25
            30 40
            

             

            Sample Output

            4
            

             

            Hint
            Huge input data, scanf is recommended.

            Source
            Central Europe 2003

            //pku1769
            /*
             * trival DP dp[i] = dp[j] + 1 (if there is a segment starting from a->i && a <= j)  o(n^2)
             * 考慮到轉移的時候選擇的是一段內的最小dp值,運用點樹可以解決
             */
            #include <string.h>
            #include <stdio.h>

            const int N = 50010;
            const int MAXINT = 1000000000;

            int n, l;

            struct ST {int i,j,m,l,r,c;} st[2*N];
            int up, cnt;

            void bd(int d, int x, int y) {
             st[d].i = x, st[d].j = y, st[d].m = (x+y)/2, st[d].c = MAXINT;
             if(x < y) {
              st[d].l = ++up; bd(up, x, st[d].m);
              st[d].r = ++up; bd(up, st[d].m+1, y);
             }
            }

            void ins(int d, int x, int c) {
             if(c < st[d].c)
              st[d].c = c;
             if(st[d].i != st[d].j) {
              if(x <= st[d].m)
               ins(st[d].l, x, c);
              else
               ins(st[d].r, x, c);
             }
            }

            int getmin(int d, int x, int y) {
             if(x <= st[d].i && y >= st[d].j)
              return st[d].c;
             int min = MAXINT;
             if(x <= st[d].m) {
              int now = getmin(st[d].l, x, y);
              if(now < min) min = now;
             }
             if(y > st[d].m) {
              int now = getmin(st[d].r, x, y);
              if(now < min) min = now;
             }
             return min;
            }

            int main() {
             int i, a, b;
             up = 0;
             scanf("%d %d ", &l, &n);
             bd(0, 1, l);
             ins(0, 1, 0);
             int max = 0;
             for(i = 0; i < n; ++i) {
              scanf("%d%d", &a, &b);
              if(a < b) {
               int min = getmin(0, a, b-1);
               ins(0, b, min+1);
              }
             }
             printf("%d\n", getmin(0, l, l));
             return 0;
            }

            Feedback

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2007-12-04 16:33 by je
            題目沒看懂,能解釋下么?

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2007-12-05 11:47 by oyjpart
            給定一個線段集,要求選擇其中一個最小的子集來覆蓋整個區域。
            要求選定的子集是按照題目給的序來覆蓋。

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-18 08:46 by Littleye
            很多測試好像得不到正確答案,例如:
            40 4
            10 30
            14 29
            25 30
            30 40
            答案應該是2,你的程序給的是1000000000(你的初始值)
            類似的例子還有不少

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-18 12:40 by oyjpart
            你的樣例是無解的,沒有線段覆蓋【0,10】的區間。

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-19 02:33 by Littleye
            I understand now. I don't think I understood the problem thoroughly before. Although the problem description doesn't clearly indicate that all the segments given should cover the whole segment(1,N), it is the right situation or else we can't get the right output from the maximizer. Now the problem description says that we can get the right output, so the subsequences given must cover the whole segments. Thanks a lot!

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-19 12:34 by oyjpart
            you are welcome

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 10:44 by l-y-p
            向大牛學習學習,“運用點樹可以解決”,好思想,很好很強大。但是還有一個疑點:在DP的時候應該從小到大進行,但是沒發現你對y坐標進行排序就直接進行,那如果是考慮這樣兩組數據:
            10 40
            0 10
            從10到40先確定到40的DP值為maxint+1,然后再由0~10確定10的值為1,這樣是不是有問題??你的程序我沒調試過,不曉得你是怎么處理的?

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 10:58 by l-y-p
            果然啊,剛調試了下,直接運行數據:
            40 2
            10 40
            0 10
            結果是1000000000,不知道是我沒看清楚還是程序的bug?

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 12:19 by oyjpart
            題目是有這樣的要求的:
            要求選定的子集是按照題目給的序來覆蓋。
            嘿嘿 如果我沒有理解錯你的意思的話

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 22:02 by l-y-p
            汗!
            What is the length of the shortest subsequence of the given sequence of sorters
            把排序一去掉就AC了,多謝大牛指點,呵呵。
            最先還一直在想如果可以排序的話就用不著用點樹了,直接貪心!

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2009-08-25 10:39 by demo
            你的程序過不了zoj 2451

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2009-09-07 23:58 by oyjpart
            題目是一樣的嗎

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2010-12-01 20:36 by LSK
            請仔細讀題。。。ZJU哪個是multi case的
            久久久久人妻一区精品| 国产精品久久久久影院色| 久久久青草青青国产亚洲免观| 曰曰摸天天摸人人看久久久| 精品久久久久久无码中文字幕| 久久久久亚洲AV无码去区首| 久久综合久久综合亚洲| 人妻精品久久久久中文字幕一冢本| 97久久精品午夜一区二区| 亚洲性久久久影院| 久久国产精品久久国产精品| 久久夜色精品国产www| 久久婷婷五月综合国产尤物app | 久久婷婷五月综合成人D啪 | 日韩AV无码久久一区二区| 亚洲一区二区三区日本久久九| 久久精品免费一区二区| 91麻精品国产91久久久久| 无码人妻久久久一区二区三区| 国产精品免费久久久久电影网| 久久精品一本到99热免费| 性做久久久久久久久老女人| 欧美精品一区二区精品久久| 无码人妻久久一区二区三区免费| 久久青青国产| 久久99精品久久久久久齐齐| 久久99精品国产一区二区三区| 久久精品一区二区三区AV| 久久婷婷人人澡人人| 精品99久久aaa一级毛片| 久久电影网一区| 国产精品99久久精品| 久久人人爽人人爽人人AV东京热| 久久国产免费直播| 亚洲午夜久久久久妓女影院| 国产99久久久国产精品小说| 久久国产劲爆AV内射—百度| 亚洲va久久久噜噜噜久久男同 | 国产精品久久久久9999| 久久96国产精品久久久| 青青青伊人色综合久久|