• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU3121 Sum of Different Primes

            Posted on 2007-02-18 10:02 oyjpart 閱讀(1244) 評(píng)論(2)  編輯 收藏 引用

            Sum of Different Primes
            Time Limit:5000MS? Memory Limit:65536K
            Total Submit:362 Accepted:219

            Description

            A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

            When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 18} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

            Your job is to write a program that reports the number of such ways for the given n and k.

            Input

            The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

            Output

            The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

            Sample Input

            24 3 
            24 2 
            2 1 
            1 1 
            4 2 
            18 3 
            17 1 
            17 3 
            17 4 
            100 5 
            1000 10 
            1120 14 
            0 0

            Sample Output

            2 
            3 
            1 
            0 
            0 
            2 
            1 
            0 
            1 
            55 
            200102899 
            2079324314

            Source
            Japan 2006

            如何寫無(wú)重復(fù)的情況呢?
            剛開始的時(shí)候我寫的是按以前寫搜索的那種寫法 加了最大數(shù)的限制
            但是數(shù)組多了一維 后來(lái)想起來(lái)其實(shí)可以這樣寫 現(xiàn)在居然忘記了。。faint

            Solution
            //by oyjpArt
            int n, s; //全數(shù),階段
            int st[MAXN][MAXS];
            bool test[MAXN]; //這個(gè)是刪數(shù)法的規(guī)則
            int p[200];
            int np;

            void pre()
            {
            ?int i, j, k;
            ?memset(test, true, sizeof(test));
            ?memset(st, 0, sizeof(st));
            ?int np = 0;
            ?for(i=2; i<MAXN; i++)
            ??if(test[i])
            ??{
            ???p[np++] = i;
            ???for(j=i+i; j<MAXN; j+=i)
            ????test[j] = 0;
            ??}
            ?st[0][0] = 1;
            ?for(i=0; i<np; i++) //階段
            ??for(j=1120-p[i]; j>=0; j--)
            ???for(k = 14; k>=1; k--)
            ????st[j+p[i]][k] += st[j][k-1];
            }
            int main()
            {
            ?pre();
            ?while(scanf("%d%d", &n, &s), n>0)
            ?{
            ??printf("%d\n", st[n][s]);
            ?}
            ?return 0;
            }

            Feedback

            # re: PKU3121 Sum of Different Primes   回復(fù)  更多評(píng)論   

            2008-07-01 18:13 by ssadwll
            自己都沒交成功

            # re: PKU3121 Sum of Different Primes   回復(fù)  更多評(píng)論   

            2008-07-01 18:43 by oyjpart
            恩?

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            久久精品18| 人人狠狠综合久久88成人| 国产精品久久久久一区二区三区| 91精品国产综合久久香蕉| 精品久久久久久无码中文字幕| 久久精品综合网| 国产精品久久久久久久| 亚洲国产香蕉人人爽成AV片久久 | 2020最新久久久视精品爱| 久久久久久国产a免费观看不卡 | 久久亚洲国产中v天仙www| 亚洲精品无码久久久久AV麻豆| 人妻丰满AV无码久久不卡| 久久国产视屏| 久久精品国产99国产电影网| 狠狠色丁香久久婷婷综合图片| 免费观看成人久久网免费观看| 精品久久久中文字幕人妻| 青青青国产精品国产精品久久久久| 国产精品亚洲综合久久| 久久国产成人| 久久AAAA片一区二区| 狠色狠色狠狠色综合久久| 新狼窝色AV性久久久久久| 久久人人爽人爽人人爽av| 伊人久久综合热线大杳蕉下载| 国产精品久久久久久吹潮| 国产aⅴ激情无码久久| 久久无码专区国产精品发布| 欧美亚洲日本久久精品| 久久精品国产一区二区| 国产精品日韩欧美久久综合| 久久99精品国产99久久| 日本久久久久久中文字幕| 99久久国产免费福利| 狠狠久久综合| 久久久久婷婷| 精品熟女少妇AV免费久久| 亚洲午夜无码久久久久| 久久国产免费观看精品3| 成人妇女免费播放久久久|