• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            基本參數(shù)搜索

            Posted on 2008-06-03 15:45 oyjpart 閱讀(3122) 評論(14)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            上次百度之星第三題竟然不會(huì)做,很是慚愧啊,腦袋生銹了。

            后來從HUST上面找了道類似的題目,AC了。


            The perfect hamilton path

            Time Limit: 5 Sec  Memory Limit: 128 MB
            Submissions: 72  Solved: 16

            Description

            There are N(2 <= N <= 13) cities and M bidirectional roads among the cities. There exist at most one road between any pair of the cities. Along every road, there are G pretty girls and B pretty boys(1 <= G,B <= 1000).
            You want to visit every city exactly once, and you can start from any city you want to. The degree of satisfaction is the ratio of the number of the pretty girls to the number of the pretty boys. You want to know the highest degree of satisfation.

            Input

            There are multiply test cases.
            First line: two integers N, M;
            The following M lines: every line with four integers i, j, G, B, response that there is a road between i and j with G and B.

            Output

            The highest degree of the satisfation, rounded to the third place after the decimal point.

            Sample Input

            3 3
            1 2 5 3
            2 3 7 4
            3 1 13 11

            Sample Output

            1.714

            HINT

            Source

            dupeng


            題目的意思是找到一個(gè)sigma(G)/sigma(B)最大的hamilton回路。
            典型的參數(shù)搜索。二分或者迭代答案就可以了。

            Solution:

            #include <stdio.h>
            #include 
            <queue>
            #include 
            <cmath>
            using namespace std;

            const double EPS = 1e-4;
            const int N = 15;
            const int M = N * N;

            #define Max(a, b) (a
            >b?a:b)

            inline 
            int dblcmp(double a, double b) {
                
            if(fabs(a-b) < EPS) return 0;
                
            return a < b ? -1 : 1;
            }

            struct Node 
            {
                
            int x, mask;
                
            double s;
                Node() {}
                Node(
            int mm, int xx, double ss) {
                    x 
            = xx;
                    mask 
            = mm;
                    s 
            = ss;
                }
            };

            int n, m;

            double adj[N][N];
            int X[M], Y[M], G[M], B[M];

            double dp[1<<N][N];

            double go(double ans) {
                
            int i, j;
                
            for(i = 0; i < n; ++i) {
                    adj[i][i] 
            = 0;
                    
            for(j = i+1; j < n; ++j) {
                        adj[i][j] 
            = adj[j][i] = -10e300;
                    }
                }
                
            for(i = 0; i < m; ++i) {
                    adj[X[i]
            -1][Y[i]-1= G[i]-ans * B[i];
                    adj[Y[i]
            -1][X[i]-1= adj[X[i]-1][Y[i]-1];
                }

                
            for(i = 0; i < (1<<n); ++i) {
                    
            for(j = 0; j < n; ++j)
                        dp[i][j] 
            = -10e100;
                }
                queue
            <Node> Q;
                
            for(i = 0; i < n; ++i) {
                    Q.push(Node(
            1<<i, i, 0.0));
                    dp[
            1<<i][i] = 0;
                }
                
            while(Q.size()) {
                    
            int f = Q.front().mask, x = Q.front().x;
                    
            double s = Q.front().s;
                    
            double& d = dp[f][x];
                    Q.pop();
                    
            if(s < d) continue;
                    
            for(i = 0; i < n; ++i) if((f&(1<<i)) == 0) {
                        
            if(dp[f|1<<i][i] < s + adj[x][i]) {
                            dp[f
            |1<<i][i] = s + adj[x][i];
                            Q.push(Node(f
            |1<<i, i, s + adj[x][i]));
                        }
                    }
                }

                
            double max = -10e100;
                
            for(i = 0; i < n; ++i) {
                    max 
            = Max(max, dp[(1<<n)-1][i]);
                }
                
            return max;
            }

            int main()
            {
                
            // freopen("t.in", "r", stdin);

                
            int i;
                
            double ans;
                
            while(scanf("%d %d"&n, &m) != EOF) {
                    
            double min = 2000, max = 0;
                    
            for(i = 0; i < m; ++i) {
                        scanf(
            "%d %d %d %d"&X[i], &Y[i], &G[i], &B[i]);
                        
            if(B[i] < min) min = B[i];
                        
            if(G[i] > max) max = G[i];
                    }
                    
            double lo = 0, hi = max/min;
                    
            int ok = 0;
                    
            for(i = 0; ; ++i) {
                        
            double mid = lo + (hi-lo)/2;
                        
            if(dblcmp((ans=go(mid)), 0.0> 0) {
                            lo 
            = mid;
                        } 
            else if(dblcmp(ans, 0.0== 0) {
                            printf(
            "%.3lf\n", mid);
                            ok 
            = 1;
                            
            break;
                        } 
            else {
                            hi 
            = mid;
                        }
                    }

                    
            if(!ok) { int a = 0; a = 1/a; }
                }

                
            return 0;
            }

             


            Feedback

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-04 13:43 by w
            你好,這個(gè)程序我看不懂……能講一下思路嗎?

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-04 14:56 by oyjpart
            你可以參考《算法藝術(shù)與信息學(xué)競賽》303-304頁
            3.地震--最有比率生成樹 一節(jié)的解答
            和這個(gè)非常類似

            就是2分枚舉那個(gè)答案,然后將除的表達(dá)式的權(quán) 轉(zhuǎn)化成+-*表達(dá)式的權(quán),再這個(gè)基礎(chǔ)上求目標(biāo)函數(shù)。 如果目標(biāo)函數(shù) != 0,則枚舉的答案應(yīng)該向使目標(biāo)函數(shù)更接近0的方向取值,

            go函數(shù)實(shí)際求的就是最大權(quán)的hamilton回路。用的是基本的壓縮狀態(tài)廣搜。

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-04 15:02 by Surfing
            我的解法

            #include <stdio.h>

            #define N 13

            typedef struct _T_AdjNode
            {
            int nBoys;
            int nGirls;
            double dRatio;
            }TAdjNode;

            TAdjNode g_AdjNode[N][N];
            int g_Path[2][N];
            int g_PathIndex[2] = {0};
            double g_dRatio[2] = {0.0};
            int nCities, nRoads;

            int FindNextNode(int nPathIndex, int nLine)
            {
            double dRatio = 0;
            int nNode = 0;
            int i = 0;
            int j = 0;
            bool bExist = false;

            for (j = 0; j < nCities; j++)
            {
            for (i = 0; i < g_PathIndex[nPathIndex]; i++)
            {
            if (j == g_Path[nPathIndex][i])
            {
            bExist = true;
            break;
            }
            }
            if (bExist)
            {
            bExist = false;
            continue;
            }
            if (g_AdjNode[nLine][j].dRatio > dRatio)
            {
            dRatio = g_AdjNode[nLine][j].dRatio;
            nNode = j;
            }
            }

            return nNode;
            }

            int FindPath(int nPathIndex, int nNode)
            {
            int nNextNode = 0;
            static int nBoys = 0, nGirls = 0;

            g_Path[nPathIndex][g_PathIndex[nPathIndex]] = nNode;
            g_PathIndex[nPathIndex]++;
            if (g_PathIndex[nPathIndex] >= nCities)
            {
            g_dRatio[nPathIndex] = (double)nGirls / nBoys;
            return 0;
            }

            nNextNode = FindNextNode(nPathIndex, nNode);
            nBoys += g_AdjNode[nNode][nNextNode].nBoys;
            nGirls += g_AdjNode[nNode][nNextNode].nGirls;
            FindPath(nPathIndex, nNextNode);

            return 0;
            }

            int main()
            {
            int i,j,nGirls,nBoys;
            char q = '0';
            int nPathIndex = 0;

            nCities = nRoads = 0;
            i = j = nGirls = nBoys = 0;

            printf("Input the number of cities and roads:\n");
            scanf("%d %d", &nCities, &nRoads);

            if (nCities < 1 || nRoads < 1)
            {
            return 1;
            }

            do
            {
            printf("Input the road index and the number of girls and boys sequentially : "
            "from to girls boys\n");
            scanf("%d %d %d %d", &i, &j, &nGirls, &nBoys);
            getchar();

            g_AdjNode[i - 1][j - 1].nBoys = nBoys;
            g_AdjNode[i - 1][j - 1].nGirls = nGirls;
            g_AdjNode[i - 1][j - 1].dRatio = (double)nGirls / nBoys;
            g_AdjNode[j - 1][i - 1].nBoys = nBoys;
            g_AdjNode[j - 1][i - 1].nGirls = nGirls;
            g_AdjNode[j - 1][i - 1].dRatio = g_AdjNode[i - 1][j - 1].dRatio;

            printf("Input finished?(y/n)");
            scanf("%c", &q);
            getchar();
            } while ('y' != q);

            //process here
            nPathIndex = 0;
            for (i = 0; i < nCities; i++)
            {
            FindPath(nPathIndex, 0);
            nPathIndex = g_dRatio[0] <= g_dRatio[1] ? 0 : 1;
            g_PathIndex[nPathIndex] = 0;
            }

            //output the result
            nPathIndex = g_dRatio[0] >= g_dRatio[1] ? 0 : 1;
            printf("The max ratio is %.3lf\n", g_dRatio[nPathIndex]);\
            printf("The best path : \n");
            for (i = 0; i < nCities; i++)
            {
            printf("%d\t", g_Path[nPathIndex][i]);
            }
            printf("\n");

            return 0;
            }

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-04 15:10 by Surfing
            一點(diǎn)小問題,更正一下

            if (g_PathIndex[nPathIndex] >= nCities)
            {
            g_dRatio[nPathIndex] = (double)nGirls / nBoys;
            nGirls = nBoys = 0;
            return 0;
            }

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-04 17:13 by oyjpart
            @Surfing
            嘿嘿,謝謝分享

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-05 22:27 by w
            多謝,受教了

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-05 23:07 by oyjpart
            不謝

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-09 23:54 by richardxx
            我做了百度那題,但比賽完才想起我貼的那個(gè)模版有點(diǎn)問題,最后果然只有4.5分,和沒做沒區(qū)別~~

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-10 12:03 by oyjpart
            @richardxx
            呵呵 進(jìn)復(fù)賽了就可以了不 看我們這種初賽就被水掉的菜菜。。

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-10 20:01 by 小Young
            跟著大牛漲經(jīng)驗(yàn)值!

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-10 20:34 by oyjpart
            汗。。。
            您謙虛了。。。

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-11 19:12 by 小Young
            請問這題你用隊(duì)列有什么用途啊?
            這題不用隊(duì)列也可以啊.

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-06-11 22:19 by oyjpart
            @ 小Young
            就是廣搜用的隊(duì)列
            不用隊(duì)列你的意思是深搜么?

            # re: 基本參數(shù)搜索  回復(fù)  更多評論   

            2008-07-26 06:09 by lengbufang
            看看!!!
            波多野结衣中文字幕久久| 国产婷婷成人久久Av免费高清| 91精品国产高清91久久久久久| 久久性生大片免费观看性| 99久久777色| 久久99精品免费一区二区| 精品久久久久久国产潘金莲| 国产成人精品久久综合| 欧美精品一区二区精品久久| 国产精品一区二区久久不卡| 欧美久久久久久午夜精品| 久久精品国产影库免费看| 久久99精品国产自在现线小黄鸭| 国产成人99久久亚洲综合精品| 久久精品免费全国观看国产| 久久无码高潮喷水| 久久亚洲精品无码aⅴ大香| 俺来也俺去啦久久综合网| 久久久无码精品亚洲日韩京东传媒| 97视频久久久| 久久精品国产99久久无毒不卡| a高清免费毛片久久| 久久综合久久性久99毛片| 香蕉久久AⅤ一区二区三区| 亚洲伊人久久综合中文成人网| 久久精品人人槡人妻人人玩AV| 欧美一区二区三区久久综合| 日韩电影久久久被窝网| 久久亚洲国产成人影院| av无码久久久久久不卡网站| 国产精品久久久久一区二区三区| 久久久久亚洲AV无码专区网站| 久久笫一福利免费导航| 久久精品亚洲日本波多野结衣 | 久久99国产综合精品女同| 国产99久久精品一区二区| 国产精品无码久久久久| 久久久久久国产精品美女| 久久99国产精品久久久| 久久99热这里只频精品6| 99久久婷婷国产综合亚洲|