• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            中南賽A題 Accumulation Degree

            Posted on 2008-05-05 20:59 oyjpart 閱讀(3066) 評(píng)論(9)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            Accumulation Degree
            Time Limit: 5000MS
            Memory Limit: 65536K
            Total Submissions: 248
            Accepted: 30

            Description

            Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.

            Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.

            A(x) (accumulation degree of node x) is defined as follows:

            1. Each edge of the tree has an positive capacity.
            2. The nodes with degree of one in the tree are named terminals.
            3. The flow of each edge can't exceed its capacity.
            4. A(x) is the maximal flow that node x can flow to other terminal nodes.

            Since it may be hard to understand the definition, an example is showed below:


            A(1)=11+5+8=24
            Details: 1->2 11
              1->4->3 5
              1->4->5 8(since 1->4 has capacity of 13)
            A(2)=5+6=11
            Details: 2->1->4->3 5
              2->1->4->5 6
            A(3)=5
            Details: 3->4->5 5
            A(4)=11+5+10=26
            Details: 4->1->2 11
              4->3 5
              4->5 10
            A(5)=10
            Details: 5->4->1->2 10

            The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.

            Input

            The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.
            All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.

            Output

            For each test case, output the result on a single line.
             

            Sample Input

            1
            5
            1 2 11
            1 4 13
            3 4 5
            4 5 10

            Sample Output

            26

            Source


            這道題的基本思想是樹形DP,如果不能理解的話請(qǐng)?jiān)噲D把雙向邊看成兩個(gè)單向邊,再比劃比劃就出來了。
            當(dāng)然不一定非要以邊做為DP的單元,也可以歸到邊上(如果你有那份心的話)。
            比賽的時(shí)候因?yàn)閿?shù)據(jù)量大而Stack Overflow,一直想寫人工模擬棧,但因?yàn)闆]寫過,在比賽中寫不出來。

            五一節(jié)虛心的跟alpc62學(xué)習(xí)了怎么寫人工模擬棧,核心思想就是將同一個(gè)DFS內(nèi)的不同DFS做個(gè)標(biāo)記,這樣在出棧的時(shí)候就可以判斷自己所處的位置,也就知道自己該采取什么行動(dòng)了。
            比如
            void DFS(int x) {
                for(int i = 0; i < head[x].size(); ++i) {
                   DFS(head[x][i]);
                }
            }
            如果把(x, i)這個(gè)2元組壓入棧也就知道自己現(xiàn)在所處的地方了。
            如果有更多的內(nèi)部DFS,同樣是加對(duì)應(yīng)的標(biāo)記。

            當(dāng)然,BFS也是一種很好的選擇(應(yīng)該說大多數(shù)隊(duì)伍會(huì)選擇BFS而不是人工模擬棧)

            //Accumulation Degree in BFS

            #include <vector>
            #include <algorithm>
            #include <iostream>
            using namespace std;

            #define Min(a, b) (a<b?a:b)
            #define Max(a, b) (a>b?a:b)

            struct Node
            {
                int x, i, pre;
                Node() {}
                Node(int xx, int ii, int pp) {x=xx, i = ii, pre=pp;}
            };

            struct Edge
            {
                int x, w, dp;
                Edge() {}
                Edge(int xx, int ww, int dd=0) { x=xx,w=ww,dp=dd;}
            };

            const int N = 200010;
            vector<Edge> e[N];
            bool chk[N];
            int n, flow[N];

            void solve() {
                int i, j, k;
                vector<Node> Q;

                fill(chk, chk + n, 0);
                fill(flow, flow + n, 0);

                for(i = 0; i < n && e[i].size()!=1; ++i);
                int st = 0, end = 0;
                chk[i] = 1;
                for(j = 0; j < e[i].size(); ++j) {
                    Q.push_back(Node(i, j, -1));
                    end++;
                    chk[e[i][j].x] = 1;
                }
                while(st < end) {
                    int x = e[Q[st].x][Q[st].i].x, pre = Q[st].pre;
                    for(i = 0; i < e[x].size(); ++i) {
                        if(!chk[e[x][i].x]) {
                            Q.push_back(Node(x, i, st));
                            end++;
                            chk[e[x][i].x] = 1;
                        }
                    }
                    ++st;
                }
                for(i = end-1; i >= 0; --i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    if(e[e[x][idx].x].size() == 1) e[x][idx].dp = e[x][idx].w;
                    else e[x][idx].dp = Min(e[x][idx].dp, e[x][idx].w);
                    if(pre == -1) continue;
                    int prex = Q[pre].x, preidx = Q[pre].i;
                    e[prex][preidx].dp += e[x][idx].dp;
                }


                for(i = 0; i < e[Q[0].x].size(); ++i) {
                    flow[Q[0].x] += e[Q[0].x][i].dp;
                }
                for(i = 0; i < end; ++i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    int y = e[x][idx].x, xx;
                    for(xx = 0; xx < e[y].size() && e[y][xx].x != x; ++xx);
                    if(pre == -1) {
                        e[y][xx].dp = e[y][xx].w;
                    }
                    else {
                        e[y][xx].dp = Min(e[y][xx].dp, e[y][xx].w);
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        flow[y] += e[y][j].dp;
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        int yy = e[y][j].x;
                        if(yy == x) continue;
                        for(k = 0; k < e[yy].size() && e[yy][k].x != y; ++k);
                        e[yy][k].dp = flow[y] - e[y][j].dp;
                    }
                }

                int max = 0;
                for(i = 0; i < n; ++i)
                    max = Max(max, flow[i]);
                printf("%d\n", max);
            }

            int main() {
                int ntc;
                int i;
                int x, y, w;
                scanf("%d", &ntc);
                while(ntc--) {
                    scanf("%d", &n);
                    for(i = 0; i < n; ++i) e[i].clear();
                    for(i = 0; i < n-1; ++i) {
                        scanf("%d %d %d", &x, &y, &w);
                        --x; --y;
                        e[x].push_back(Edge(y, w));
                        e[y].push_back(Edge(x, w));
                    }
                    solve();
                }
                return 0;
            }


            Feedback

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-06 14:41 by wlzb
            不錯(cuò)呀,上原創(chuàng)精華了

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-06 18:00 by oyjpart
            哦?

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-12 21:15 by alpc55
            太強(qiáng)了,你竟然模擬棧……

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學(xué)習(xí)學(xué)習(xí)·~

            公網(wǎng)能進(jìn)你們的oj系統(tǒng)嗎??

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學(xué)習(xí)學(xué)習(xí)·~

            公網(wǎng)能進(jìn)你們的oj系統(tǒng)嗎??
            教育網(wǎng)

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-13 23:50 by oyjpart
            我們是軍網(wǎng) 外網(wǎng)應(yīng)該不能訪問

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-14 17:15 by ecnu_zp
            我還是不太明白啊~
            我想的dp是N^2A的,因?yàn)橐獙?duì)所有點(diǎn)執(zhí)行一次~~
            我弱,能不能教我一下啊。

            ecnu_zp@yahoo.cn
            QQ:345717212
            MSN: arena_zp@live.cn

            ^_^

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-14 20:08 by oyjpart
            每條邊拆成2條邊 。 然后對(duì)每條邊設(shè)一個(gè)DP值。
            比如邊A->B. B連接的其他點(diǎn)的集合叫做S(S中去掉A)
            dp[A->B] = Min(Capacity[A->B], 加合(dp[B->Ci]));
            可以通過2次DFS來求出這些DP值。第一次求出一個(gè)方向的邊的DP值,再一次求出反向。
            試著畫個(gè)圖來理解吧:)

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-07-26 06:06 by lengbufang
            看看!!
            91久久精品国产91性色也| 久久亚洲国产精品五月天婷| 人妻无码中文久久久久专区| 精品国产乱码久久久久久呢| 蜜臀久久99精品久久久久久小说 | 五月丁香综合激情六月久久| 亚洲国产精品18久久久久久| 国产精品视频久久| 日批日出水久久亚洲精品tv| 久久香蕉超碰97国产精品| 国产精品九九久久免费视频| 精品多毛少妇人妻AV免费久久| 国内精品久久久久久野外| 三级韩国一区久久二区综合| 久久99精品综合国产首页| 久久人妻AV中文字幕| 国産精品久久久久久久| 国产精品久久久久久| 国产精品美女久久福利网站| 久久久久这里只有精品 | 国产午夜精品理论片久久 | 伊人久久五月天| 国産精品久久久久久久| 久久99免费视频| 久久婷婷五月综合97色| 久久精品国产男包| 久久久久亚洲AV无码专区桃色| 久久噜噜电影你懂的| 久久无码人妻一区二区三区| 亚洲精品tv久久久久久久久 | 久久亚洲中文字幕精品一区| 93精91精品国产综合久久香蕉| 亚洲综合伊人久久综合| 亚洲人成无码久久电影网站| 欧美精品一区二区久久| 久久93精品国产91久久综合| 色偷偷888欧美精品久久久| 国产精品欧美久久久天天影视| 久久精品国产91久久综合麻豆自制| 97久久综合精品久久久综合| 亚洲国产天堂久久综合网站|