• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6
            Minimizing maximizer
            Time Limit: 5000MS Memory Limit: 30000K
            Total Submissions: 1004 Accepted: 280

            Description
            The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs.

            Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer.

            An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values?

            Task
            Write a program that:

            reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline,
            computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data,
            writes the result.

            Input
            The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.

            Output
            The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.

            Sample Input

            40 6
            20 30
            1 10
            10 20
            20 30
            15 25
            30 40
            

             

            Sample Output

            4
            

             

            Hint
            Huge input data, scanf is recommended.

            Source
            Central Europe 2003

            //pku1769
            /*
             * trival DP dp[i] = dp[j] + 1 (if there is a segment starting from a->i && a <= j)  o(n^2)
             * 考慮到轉移的時候選擇的是一段內(nèi)的最小dp值,運用點樹可以解決
             */
            #include <string.h>
            #include <stdio.h>

            const int N = 50010;
            const int MAXINT = 1000000000;

            int n, l;

            struct ST {int i,j,m,l,r,c;} st[2*N];
            int up, cnt;

            void bd(int d, int x, int y) {
             st[d].i = x, st[d].j = y, st[d].m = (x+y)/2, st[d].c = MAXINT;
             if(x < y) {
              st[d].l = ++up; bd(up, x, st[d].m);
              st[d].r = ++up; bd(up, st[d].m+1, y);
             }
            }

            void ins(int d, int x, int c) {
             if(c < st[d].c)
              st[d].c = c;
             if(st[d].i != st[d].j) {
              if(x <= st[d].m)
               ins(st[d].l, x, c);
              else
               ins(st[d].r, x, c);
             }
            }

            int getmin(int d, int x, int y) {
             if(x <= st[d].i && y >= st[d].j)
              return st[d].c;
             int min = MAXINT;
             if(x <= st[d].m) {
              int now = getmin(st[d].l, x, y);
              if(now < min) min = now;
             }
             if(y > st[d].m) {
              int now = getmin(st[d].r, x, y);
              if(now < min) min = now;
             }
             return min;
            }

            int main() {
             int i, a, b;
             up = 0;
             scanf("%d %d ", &l, &n);
             bd(0, 1, l);
             ins(0, 1, 0);
             int max = 0;
             for(i = 0; i < n; ++i) {
              scanf("%d%d", &a, &b);
              if(a < b) {
               int min = getmin(0, a, b-1);
               ins(0, b, min+1);
              }
             }
             printf("%d\n", getmin(0, l, l));
             return 0;
            }

            Feedback

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2007-12-04 16:33 by je
            題目沒看懂,能解釋下么?

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2007-12-05 11:47 by oyjpart
            給定一個線段集,要求選擇其中一個最小的子集來覆蓋整個區(qū)域。
            要求選定的子集是按照題目給的序來覆蓋。

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-18 08:46 by Littleye
            很多測試好像得不到正確答案,例如:
            40 4
            10 30
            14 29
            25 30
            30 40
            答案應該是2,你的程序給的是1000000000(你的初始值)
            類似的例子還有不少

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-18 12:40 by oyjpart
            你的樣例是無解的,沒有線段覆蓋【0,10】的區(qū)間。

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-19 02:33 by Littleye
            I understand now. I don't think I understood the problem thoroughly before. Although the problem description doesn't clearly indicate that all the segments given should cover the whole segment(1,N), it is the right situation or else we can't get the right output from the maximizer. Now the problem description says that we can get the right output, so the subsequences given must cover the whole segments. Thanks a lot!

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-01-19 12:34 by oyjpart
            you are welcome

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 10:44 by l-y-p
            向大牛學習學習,“運用點樹可以解決”,好思想,很好很強大。但是還有一個疑點:在DP的時候應該從小到大進行,但是沒發(fā)現(xiàn)你對y坐標進行排序就直接進行,那如果是考慮這樣兩組數(shù)據(jù):
            10 40
            0 10
            從10到40先確定到40的DP值為maxint+1,然后再由0~10確定10的值為1,這樣是不是有問題??你的程序我沒調(diào)試過,不曉得你是怎么處理的?

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 10:58 by l-y-p
            果然啊,剛調(diào)試了下,直接運行數(shù)據(jù):
            40 2
            10 40
            0 10
            結果是1000000000,不知道是我沒看清楚還是程序的bug?

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 12:19 by oyjpart
            題目是有這樣的要求的:
            要求選定的子集是按照題目給的序來覆蓋。
            嘿嘿 如果我沒有理解錯你的意思的話

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2008-04-18 22:02 by l-y-p
            汗!
            What is the length of the shortest subsequence of the given sequence of sorters
            把排序一去掉就AC了,多謝大牛指點,呵呵。
            最先還一直在想如果可以排序的話就用不著用點樹了,直接貪心!

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2009-08-25 10:39 by demo
            你的程序過不了zoj 2451

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2009-09-07 23:58 by oyjpart
            題目是一樣的嗎

            # re: pku1769 新寫的線段樹(點樹)模版  回復  更多評論   

            2010-12-01 20:36 by LSK
            請仔細讀題。。。ZJU哪個是multi case的
            久久A级毛片免费观看| 精品精品国产自在久久高清| 久久亚洲熟女cc98cm| 久久精品卫校国产小美女| 99久久精品影院老鸭窝| 久久国产视频99电影| 久久永久免费人妻精品下载| 精品久久国产一区二区三区香蕉| 久久精品成人欧美大片| 久久精品嫩草影院| 久久九九精品99国产精品| 亚洲Av无码国产情品久久| 久久国产精品99国产精| 亚洲日韩欧美一区久久久久我| av无码久久久久久不卡网站| 亚洲一级Av无码毛片久久精品| 国内精品久久久久| 久久精品国产男包| 中文国产成人精品久久亚洲精品AⅤ无码精品 | 久久久久久精品无码人妻| 亚洲一区二区三区日本久久九| 亚洲欧美日韩久久精品第一区| 久久婷婷五月综合97色直播| 狠狠狠色丁香婷婷综合久久五月 | 97精品国产97久久久久久免费| 久久久噜噜噜久久熟女AA片| 思思久久99热只有频精品66| 久久精品夜色噜噜亚洲A∨| 免费观看久久精彩视频| 国内精品久久久人妻中文字幕| 亚洲伊人久久精品影院| 亚洲国产精品一区二区三区久久| 久久精品无码一区二区日韩AV| 国产99久久久国产精品~~牛| 中文精品久久久久国产网址| 久久99热狠狠色精品一区| 久久精品嫩草影院| 999久久久国产精品| 久久精品国产福利国产琪琪| 国产精品亚洲综合专区片高清久久久 | 国产福利电影一区二区三区,免费久久久久久久精 |