• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6
            Minimizing maximizer
            Time Limit: 5000MS Memory Limit: 30000K
            Total Submissions: 1004 Accepted: 280

            Description
            The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs.

            Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer.

            An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values?

            Task
            Write a program that:

            reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline,
            computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data,
            writes the result.

            Input
            The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.

            Output
            The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.

            Sample Input

            40 6
            20 30
            1 10
            10 20
            20 30
            15 25
            30 40
            

             

            Sample Output

            4
            

             

            Hint
            Huge input data, scanf is recommended.

            Source
            Central Europe 2003

            //pku1769
            /*
             * trival DP dp[i] = dp[j] + 1 (if there is a segment starting from a->i && a <= j)  o(n^2)
             * 考慮到轉(zhuǎn)移的時候選擇的是一段內(nèi)的最小dp值,運(yùn)用點(diǎn)樹可以解決
             */
            #include <string.h>
            #include <stdio.h>

            const int N = 50010;
            const int MAXINT = 1000000000;

            int n, l;

            struct ST {int i,j,m,l,r,c;} st[2*N];
            int up, cnt;

            void bd(int d, int x, int y) {
             st[d].i = x, st[d].j = y, st[d].m = (x+y)/2, st[d].c = MAXINT;
             if(x < y) {
              st[d].l = ++up; bd(up, x, st[d].m);
              st[d].r = ++up; bd(up, st[d].m+1, y);
             }
            }

            void ins(int d, int x, int c) {
             if(c < st[d].c)
              st[d].c = c;
             if(st[d].i != st[d].j) {
              if(x <= st[d].m)
               ins(st[d].l, x, c);
              else
               ins(st[d].r, x, c);
             }
            }

            int getmin(int d, int x, int y) {
             if(x <= st[d].i && y >= st[d].j)
              return st[d].c;
             int min = MAXINT;
             if(x <= st[d].m) {
              int now = getmin(st[d].l, x, y);
              if(now < min) min = now;
             }
             if(y > st[d].m) {
              int now = getmin(st[d].r, x, y);
              if(now < min) min = now;
             }
             return min;
            }

            int main() {
             int i, a, b;
             up = 0;
             scanf("%d %d ", &l, &n);
             bd(0, 1, l);
             ins(0, 1, 0);
             int max = 0;
             for(i = 0; i < n; ++i) {
              scanf("%d%d", &a, &b);
              if(a < b) {
               int min = getmin(0, a, b-1);
               ins(0, b, min+1);
              }
             }
             printf("%d\n", getmin(0, l, l));
             return 0;
            }

            Feedback

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2007-12-04 16:33 by je
            題目沒看懂,能解釋下么?

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2007-12-05 11:47 by oyjpart
            給定一個線段集,要求選擇其中一個最小的子集來覆蓋整個區(qū)域。
            要求選定的子集是按照題目給的序來覆蓋。

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-01-18 08:46 by Littleye
            很多測試好像得不到正確答案,例如:
            40 4
            10 30
            14 29
            25 30
            30 40
            答案應(yīng)該是2,你的程序給的是1000000000(你的初始值)
            類似的例子還有不少

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-01-18 12:40 by oyjpart
            你的樣例是無解的,沒有線段覆蓋【0,10】的區(qū)間。

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-01-19 02:33 by Littleye
            I understand now. I don't think I understood the problem thoroughly before. Although the problem description doesn't clearly indicate that all the segments given should cover the whole segment(1,N), it is the right situation or else we can't get the right output from the maximizer. Now the problem description says that we can get the right output, so the subsequences given must cover the whole segments. Thanks a lot!

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-01-19 12:34 by oyjpart
            you are welcome

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-04-18 10:44 by l-y-p
            向大牛學(xué)習(xí)學(xué)習(xí),“運(yùn)用點(diǎn)樹可以解決”,好思想,很好很強(qiáng)大。但是還有一個疑點(diǎn):在DP的時候應(yīng)該從小到大進(jìn)行,但是沒發(fā)現(xiàn)你對y坐標(biāo)進(jìn)行排序就直接進(jìn)行,那如果是考慮這樣兩組數(shù)據(jù):
            10 40
            0 10
            從10到40先確定到40的DP值為maxint+1,然后再由0~10確定10的值為1,這樣是不是有問題??你的程序我沒調(diào)試過,不曉得你是怎么處理的?

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-04-18 10:58 by l-y-p
            果然啊,剛調(diào)試了下,直接運(yùn)行數(shù)據(jù):
            40 2
            10 40
            0 10
            結(jié)果是1000000000,不知道是我沒看清楚還是程序的bug?

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-04-18 12:19 by oyjpart
            題目是有這樣的要求的:
            要求選定的子集是按照題目給的序來覆蓋。
            嘿嘿 如果我沒有理解錯你的意思的話

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2008-04-18 22:02 by l-y-p
            汗!
            What is the length of the shortest subsequence of the given sequence of sorters
            把排序一去掉就AC了,多謝大牛指點(diǎn),呵呵。
            最先還一直在想如果可以排序的話就用不著用點(diǎn)樹了,直接貪心!

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2009-08-25 10:39 by demo
            你的程序過不了zoj 2451

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2009-09-07 23:58 by oyjpart
            題目是一樣的嗎

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評論   

            2010-12-01 20:36 by LSK
            請仔細(xì)讀題。。。ZJU哪個是multi case的
            久久国产影院| 伊人久久大香线焦综合四虎| 久久精品无码专区免费| 精品无码久久久久久久动漫| 欧美粉嫩小泬久久久久久久| 亚洲乱码中文字幕久久孕妇黑人| 久久亚洲日韩精品一区二区三区| 久久亚洲国产欧洲精品一| 亚洲国产精品成人久久蜜臀| 久久天天躁狠狠躁夜夜网站| 久久国产一片免费观看| 久久天天躁狠狠躁夜夜网站| 亚洲国产成人久久精品99 | 亚洲国产精品无码久久一线| 91麻豆精品国产91久久久久久| 日韩va亚洲va欧美va久久| 97久久超碰国产精品旧版| 天堂无码久久综合东京热| 色综合久久天天综合| 日韩人妻无码一区二区三区久久| 久久久无码精品午夜| 青青草原综合久久| 精品综合久久久久久888蜜芽| 亚洲精品无码久久久久AV麻豆| 久久精品国产精品国产精品污| 精品一二三区久久aaa片| 亚洲欧美一级久久精品| 久久99国产精品成人欧美| 久久久青草青青亚洲国产免观| 无码伊人66久久大杳蕉网站谷歌| 亚洲精品午夜国产va久久 | 亚洲欧美成人综合久久久| 色婷婷久久久SWAG精品| 久久亚洲国产成人影院网站| 久久久久亚洲AV无码去区首| 久久国产精品视频| 久久福利片| 亚洲国产高清精品线久久| 久久无码国产专区精品| 精品国产乱码久久久久久人妻| 99久久国产精品免费一区二区|