• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            SRM387

            Posted on 2008-01-10 17:23 oyjpart 閱讀(1003) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            同SRM386,再度只做了第一題。。RATING保持不變。。算了,我就是弱。

            第一題其實相當于把非法的行刪掉并且保持列為1就可以了(去掉一行joker)
            我代碼寫的慢啊。。又是低分。。

            第二題是個DP,本來是不很難想的,感覺還是時間太緊,有點緊張了。。
            小小菜鳥再度100多分收場。。    

               public class Node implements Comparable { 
                    public int x, y;

                    public int compareTo(Object o) {
                        Node no = (Node) o;
                        if (this.x == no.x)
                            return this.y - no.y;
                        return this.x - no.x;
                    }

                    public Node(int x, int y) {
                        this.x = x;
                        this.y = y;
                    }
                }

                public int numberOfSubsets(int[] start, int[] finish) {
                    int n = start.length;
                    Node[] A = new Node[n+2];
                    int[] dp = new int[n+2];
                    for (int i = 0; i < n; ++i) {
                        A[i] = new Node(start[i], finish[i]);
                    }
                    A[n++] = new Node(1000, 1000);
                    A[n++] = new Node(0, 0);
                    Arrays.sort(A);
                    Arrays.fill(dp, 0);
                    dp[0] = 1;
                    int i, j, k;
                    for (i = 1; i < n; ++i) {
                        for (j = 0; j < i; ++j) {
                            if (!(A[i].x <= A[j].y && A[i].y >= A[j].x)) {
                                boolean ok = true;
                                for (k = j + 1; k < i; ++k) {
                                    if (!(A[k].x <= A[i].y && A[k].y >= A[i].x)
                                            && !(A[k].x <= A[j].y && A[k].y >= A[j].x)) {
                                        ok = false;
                                    }
                                }
                                if (ok) 
                                    dp[i] += dp[j];
                            }
                        }
                    }

                    return dp[n-1];
                }

            Analysis提供了一種O(nlogn)的方法,不難,有興趣的可以看看。

            There are several approaches to this problem. Most of them use dynamic programming, but some optimized brute-force solutions may also pass system test. Here will be explained an O(n^2) algorithm and it can be relatively easily modified to have O(n * lg(n)) complexity, where n is the number of intervals.

            First of all, let's sort intervals by their finish points. Then we'll define two functions, partial(x) and total(x). The total(x) returns the number of valid subsets of the set formed by first x + 1 intervals. The partial(x) returns the number of valid subsets, which contains x-th interval, of the set formed by the first x + 1 intervals. The solution would be total(n), where n is the number of intervals. Now, let's see how to calculate each of those two functions.

            logN來自二分查找i前面的最后一個不相交的線段。

            第三題也不是很難,但是,比如說我這種第二題都沒出的人就不用說了。。
            #pragma warning ( disable : 4786 )

            #include <vector>
            #include <list>
            #include <map>
            #include <set>
            #include <deque>
            #include <stack>
            #include <bitset>
            #include <queue>
            #include <algorithm>
            #include <functional>
            #include <numeric>
            #include <utility>
            #include <sstream>
            #include <iostream>
            #include <iomanip>
            #include <cstdio>
            #include <cmath>
            #include <cstdlib>
            #include <ctime>

            using namespace std;
            #define sz(x) ((int)(x).size())
            #define Max(a, b) ((a) > (b) ? (a) : (b))
            #define Min(a, b) ((a) < (b) ? (a) : (b))
            #define two(x) (1<<(x))
            #define contains(S, x) (((S)&two(x)) != 0)
            typedef long long LL;
            const int MAXINT = 1000000000;
            const double INF = 10e300;
            const double EPS = 1e-7;

            inline int dblcmp(double a, double b) { if(fabs(a-b) < EPS) return 0; if(a < b) return -1;  return 1; }  
            inline int bitcnt(int x) { int cnt = 0; while(x != 0) { cnt++; x &= (x-1); } return cnt; }
            template<typename T> string toString(const T& s) { ostringstream os; os << s; return s.str();}

            const int MOD = 1000000007;

            LL P[2600];
            LL power(LL a, LL b) { //actually returns a integer in [0, MOD)
             if(b == 0) return 1;
             if(b % 2 == 0) {
              LL t = power(a, b>>1);
              return t*t%MOD;
             }
             else
              return a%MOD*power(a, b-1)%MOD;
            }

            LL cal(int a0, LL q, LL times) {
             if(times == 0) return 0;
             LL t = cal(a0, q, times>>1);
             t *= (1+power(q, times>>1));
             t %= MOD;
             if(!(times & 1)) return t;
             return (t*q+a0)%MOD;
            }

            class StrangeArray
            {
            public:
             int calculateSum(vector <int> A, vector <int> B, string sN)
             {
              LL N;
              sscanf(sN.c_str(), "%lld", &N);
              int i, cycle = sz(A)*sz(B);
              for(i = 0; i < cycle; ++i) {
               P[i] = power(A[i%sz(A)], B[i%sz(B)] + i/sz(B));
              }

              LL ans = 0;
              for(i = 0; i < cycle; ++i) {
               LL times = (N-i-1+cycle)/cycle;
               LL q = power(A[i%sz(A)], sz(A));
               ans += cal(P[i], q, times);
               ans %= MOD;
              }
              return (int)ans;
             }
             
             
            };

             

            // Powered by FileEdit
            // Powered by TZTester 1.01 [25-Feb-2003]
            // Powered by CodeProcessor

            国产一级做a爰片久久毛片| 久久本道久久综合伊人| 久久天天躁夜夜躁狠狠| 亚洲AV无码一区东京热久久| 亚洲AV无码久久精品成人 | 久久w5ww成w人免费| 亚洲精品无码久久千人斩| 亚洲国产另类久久久精品| 久久综合狠狠综合久久激情 | 日产久久强奸免费的看| 国产亚洲精久久久久久无码77777| 亚洲国产精品嫩草影院久久| 久久久久久伊人高潮影院| 99久久精品国产高清一区二区| 亚洲国产精品久久久久婷婷老年 | 国产高潮久久免费观看| 亚洲国产成人久久综合一区77 | 国产亚洲精午夜久久久久久| 伊人精品久久久久7777| 久久久久久亚洲Av无码精品专口| 99久久婷婷国产一区二区| 亚洲va中文字幕无码久久| 久久综合精品国产一区二区三区| 久久99精品久久久久久久不卡| 久久精品18| 国产精品久久午夜夜伦鲁鲁| 亚洲美日韩Av中文字幕无码久久久妻妇 | 日本WV一本一道久久香蕉| 日本免费一区二区久久人人澡 | 久久青青草原精品国产软件| 老男人久久青草av高清| 久久精品国产第一区二区| 久久99精品国产自在现线小黄鸭| 精品国产99久久久久久麻豆| 性高朝久久久久久久久久| 99久久精品国产综合一区| 久久99精品久久久久久久久久| 久久这里只有精品18| 久久丫精品国产亚洲av| 久久天天躁狠狠躁夜夜avapp| 中文精品久久久久人妻不卡|