• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            A decorative fence
            Time Limit:1000MS  Memory Limit:10000K
            Total Submit:1548 Accepted:440

            Description
            Richard just finished building his new house. Now the only thing the house misses is a cute little wooden fence. He had no idea how to make a wooden fence, so he decided to order one. Somehow he got his hands on the ACME Fence Catalogue 2002, the ultimate resource on cute little wooden fences. After reading its preface he already knew, what makes a little wooden fence cute.
            A wooden fence consists of N wooden planks, placed vertically in a row next to each other. A fence looks cute if and only if the following conditions are met:
            ?The planks have different lengths, namely 1, 2, . . . , N plank length units.
            ?Each plank with two neighbors is either larger than each of its neighbors or smaller than each of them. (Note that this makes the top of the fence alternately rise and fall.)
            It follows, that we may uniquely describe each cute fence with N planks as a permutation a1, . . . , aN of the numbers 1, . . . ,N such that (any i; 1 < i < N) (ai − ai−1)*(ai − ai+1) > 0 and vice versa, each such permutation describes a cute fence.
            It is obvious, that there are many di erent cute wooden fences made of N planks. To bring some order into their catalogue, the sales manager of ACME decided to order them in the following way: Fence A (represented by the permutation a1, . . . , aN) is in the catalogue before fence B (represented by b1, . . . , bN) if and only if there exists such i, that (any j < i) aj = bj and (ai < bi). (Also to decide, which of the two fences is earlier in the catalogue, take their corresponding permutations, find the first place on which they differ and compare the values on this place.) All the cute fences with N planks are numbered (starting from 1) in the order they appear in the catalogue. This number is called their catalogue number.


            After carefully examining all the cute little wooden fences, Richard decided to order some of them. For each of them he noted the number of its planks and its catalogue number. Later, as he met his friends, he wanted to show them the fences he ordered, but he lost the catalogue somewhere. The only thing he has got are his notes. Please help him find out, how will his fences look like.

             

            Input
            The first line of the input file contains the number K (1 <= K <= 100) of input data sets. K lines follow, each of them describes one input data set.
            Each of the following K lines contains two integers N and C (1 <= N <= 20), separated by a space. N is the number of planks in the fence, C is the catalogue number of the fence.
            You may assume, that the total number of cute little wooden fences with 20 planks fits into a 64-bit signed integer variable (long long in C/C++, int64 in FreePascal). You may also assume that the input is correct, in particular that C is at least 1 and it doesn抰 exceed the number of cute fences with N planks.

            Output
            For each input data set output one line, describing the C-th fence with N planks in the catalogue. More precisely, if the fence is described by the permutation a1, . . . , aN, then the corresponding line of the output file should contain the numbers ai (in the correct order), separated by single spaces.

            Sample Input

            2
            2 1
            3 3

             

            Sample Output

            1 2
            2 3 1

             

            Source
            CEOI 2002


            也算是DP+分段統(tǒng)計(jì)中的經(jīng)典題了 呵呵
            DP的狀態(tài)表示如下
            dp[style][n][i][j] :
            style 代表走向 0 代表向上(也就是下次要向下) 1代表向下
            n代表總共的fence數(shù)
            i代表比當(dāng)前選擇的fence高的fence數(shù)(注意 當(dāng)前fence是一個(gè)隱藏的參數(shù) 因?yàn)樵摖顟B(tài)不需要知道當(dāng)前fence是哪個(gè) 只需要知道有多少比這個(gè)fence高 多少比這個(gè)fence低 就可以代表整個(gè)狀態(tài))
            j代表比當(dāng)前選擇的fence低的fence數(shù)

            這樣很直觀的得到了一個(gè)DP方程

                dp[0][i][j][k] += dp[1][i-1][j-m][k+m-1]; (m = 1 ... j (inclusive))

                dp[1][i][j][k] += dp[0][i-1][j+m-1][k-m];   (m = 1... k(inclusive))

            具體請(qǐng)參考源代碼

             1#include <stdio.h>
             2#include <string.h>
             3
             4const int N = 21;
             5__int64 dp[2][N][N][N];
             6int n;
             7__int64 idx;
             8bool chk[N];
             9
            10void pre() {
            11    int i, j, m;
            12
            13    memset(dp, 0, sizeof(dp));
            14
            15    dp[0][1][0][0= 1;
            16    dp[1][1][0][0= 1;
            17
            18    for(i = 2; i <= 20++i) {
            19        for(j = 0; j < i; ++j) {
            20            int k = i - j - 1;
            21            for(m = 1; m <= j; ++m) 
            22                dp[0][i][j][k] += dp[1][i-1][j-m][k+m-1];
            23            for(m = 1; m <= k; ++m)
            24                dp[1][i][j][k] += dp[0][i-1][j+m-1][k-m];
            25        }
            26    }
            27}
            28
            29void DFS(int nowint last, int style, __int64 idx) {
            30    if(now <= 0) return;
            31    int i, j;
            32    for(i = 0; i < n; ++i) if(!chk[i]) {
            33        if(style == 0 && i < last) continue;
            34        if(style == 1 && i > last) return;
            35
            36        chk[i] = true;
            37        int big = 0, small = 0;
            38        for(j = 0; j < n; ++j) if(!chk[j]) {
            39            if(j < i) small++;
            40            if(j > i) big++;
            41        }
            42
            43        if(style == 0 || style == -1) {
            44            if(idx > dp[1][now][big][small]) idx -= dp[1][now][big][small];
            45            else {
            46                printf("%d ", i+1);
            47                DFS(now-1, i, 1, idx);    return;
            48            }
            49        }
            50
            51        if(style == 1 || style == -1) {
            52            if(idx > dp[0][now][big][small]) idx -= dp[0][now][big][small];
            53            else {
            54                printf("%d ", i+1);
            55                DFS(now-1, i, 0, idx);    return;
            56            }
            57        }
            58        chk[i] = false;
            59    }
            60}
            61
            62int main() {
            63    int ntc;
            64    pre();
            65    scanf("%d "&ntc);
            66    while(ntc--) {
            67        scanf("%d %I64d"&n, &idx);
            68        memset(chk, false, sizeof(chk));
            69        DFS(n, -1-1, idx);
            70        putchar('\n');
            71    }
            72    return 0;
            73}

            Feedback

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-18 15:57 by deoxyz
            你的最后一維根本不需要啊.......這樣空間復(fù)雜度會(huì)下降不少啊...

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-18 16:27 by oyjpart
            真的么?
            那你怎么寫(xiě)的呢?

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-19 10:08 by deoxyz
            就你的這個(gè)程序的話 直接把所有有關(guān)最后一維的東西全部刪掉就行了,第三維完全可以用前兩維表示~而且輸出可以不用遞歸會(huì)快點(diǎn)~ 我ACM也剛學(xué)1年多點(diǎn) 有空交流交流 我QQ120148455

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-19 11:05 by oyjpart
            恩 是的

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-10-10 13:28 by floyd635
            的確只要三維就可以完成...
            久久一区二区免费播放| 久久久久亚洲AV无码专区桃色| 人妻精品久久无码区| 久久精品无码一区二区app| 日韩电影久久久被窝网| 国产午夜精品久久久久免费视 | yellow中文字幕久久网| 久久免费99精品国产自在现线| 欧美一区二区久久精品| 18岁日韩内射颜射午夜久久成人| 国产69精品久久久久9999| 久久久久久毛片免费播放| 狠狠色丁香久久婷婷综合图片| 国产精品免费久久久久电影网| 久久午夜无码鲁丝片秋霞| 亚洲国产成人精品女人久久久| 久久精品人人做人人爽电影| 精品国产VA久久久久久久冰| 国产精品久久久久AV福利动漫| 中文字幕无码精品亚洲资源网久久| 精品视频久久久久| 一个色综合久久| 久久天堂AV综合合色蜜桃网| 亚洲成色WWW久久网站| 久久精品国产亚洲AV无码偷窥| 国产午夜精品久久久久免费视| 久久99国产综合精品| 国内精品人妻无码久久久影院 | 亚洲а∨天堂久久精品9966| 青青久久精品国产免费看| 色综合久久久久久久久五月| 99久久精品免费国产大片| 免费一级做a爰片久久毛片潮| 少妇熟女久久综合网色欲| 久久不射电影网| 精品国产福利久久久| 久久中文精品无码中文字幕 | 久久天天躁狠狠躁夜夜躁2O2O | 午夜精品久久久内射近拍高清| 久久婷婷色香五月综合激情| 久久国产热这里只有精品|