• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Supermarket
            Time Limit:2000MS  Memory Limit:65536K
            Total Submit:987 Accepted:369

            Description
            A supermarket has a set Prod of products on sale. It earns a profit px for each product x∈Prod sold by a deadline dx that is measured as an integral number of time units starting from the moment the sale begins. Each product takes precisely one unit of time for being sold. A selling schedule is an ordered subset of products Sell ≤ Prod such that the selling of each product x∈Sell, according to the ordering of Sell, completes before the deadline dx or just when dx expires. The profit of the selling schedule is Profit(Sell)=Σx∈Sellpx. An optimal selling schedule is a schedule with a maximum profit.
            For example, consider the products Prod={a,b,c,d} with (pa,da)=(50,2), (pb,db)=(10,1), (pc,dc)=(20,2), and (pd,dd)=(30,1). The possible selling schedules are listed in table 1. For instance, the schedule Sell={d,a} shows that the selling of product d starts at time 0 and ends at time 1, while the selling of product a starts at time 1 and ends at time 2. Each of these products is sold by its deadline. Sell is the optimal schedule and its profit is 80.


            Write a program that reads sets of products from an input text file and computes the profit of an optimal selling schedule for each set of products.

             

             

             

             

             

            Input
            A set of products starts with an integer 0 <= n <= 10000, which is the number of products in the set, and continues with n pairs pi di of integers, 1 <= pi <= 10000 and 1 <= di <= 10000, that designate the profit and the selling deadline of the i-th product. White spaces can occur freely in input. Input data terminate with an end of file and are guaranteed correct.

            Output
            For each set of products, the program prints on the standard output the profit of an optimal selling schedule for the set. Each result is printed from the beginning of a separate line.

            Sample Input

            4  50 2  10 1   20 2   30 1
            7  20 1   2 1   10 3  100 2   8 2
            5 20  50 10
            

             

             

             

             

             

            Sample Output

            80
            185

             

             

             

             

             

            Hint
            The sample input contains two product sets. The first set encodes the products from table 1. The second set is for 7 products. The profit of an optimal schedule for these products is 185.

            Source
            Southeastern Europe 2003


            貪心是很容易想到的 盡可能將利潤大的選中 然后盡可能放到DeadLine附近去

            這里就有一個問題 怎樣盡快拿到一個deadLine往上數(shù)第一個空閑日期?

            想法0:直接搜o(n^2)的查找總費時 可能超時!

            想法1:線段樹!問題建模:一個數(shù)的前面第幾個是空閑?
            對10000的區(qū)間建立線段樹 可以將查詢復(fù)雜度降低到NlogN

            想法2:   并查集!對一個連續(xù)非空閑區(qū)間建立集合 其代表元選擇上面第一個空閑的日期!時間復(fù)雜度再降低到o(N)! 系數(shù)為ackman函數(shù) 很小

            Problem Id:1456  User Id:oyjpart
            Memory:172K  Time:15MS
            Language:G++  Result:Accepted

            //by oyjpArt
            #include <stdio.h>
            #include <string.h>
            #include <algorithm>
            using namespace std;
            const int N = 10010;
            int ng;
            struct good{int p, d;}g[N];
            int p[N];
            bool flag[N];

            bool operator < (const good& a, const good& b) {return a.p > b.p; }

            int find_set(int a) {
             int t = a;
             while(t != p[t]) t = p[t];
             int r = a;
             while(r != p[r]) { int k = p[r]; p[r] = t; r = k; }
             return t;
            }

            int main() {
             int i;
             while(scanf("%d", &ng) != EOF) {
              memset(flag, 0, sizeof(flag));
              int maxd = 0;
              for(i = 0; i<ng; i++) {
               scanf("%d%d", &(g[i].p), &(g[i].d));
               if(g[i].d > maxd) maxd = g[i].d;
              }
              for(i = 1; i<maxd; i++)
               p[i] = i;
              sort(g, g+ng);
              int cnt = 0;
              for(i = 0; i<ng; i++) {
               int d;
               if(!flag[g[i].d]) { d = g[i].d; p[d] = d-1; }
               else d = find_set(g[i].d);
               if(d > 0) cnt += g[i].p;
               flag[d] = 1;
               if(d > 0 && flag[d+1]) p[d] = p[d-1];
              }
              printf("%d\n", cnt);
             }
             return 0;
            }

            Feedback

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-11 18:39 by nick
            if(flag[d+1]) p[d] = p[d-1];

            加這一行的目的在哪呢?

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-11 20:07 by oyjpart
            p[d]代表選中在D之前第一個空閑的日子
            就是說d這個日期用了之后 那么第一個空閑的日子就一定時p[d-1];
            也可以這樣寫:
            for(i = 0; i<ng; i++) {
            int d = g[i].d;
            if(flag[g[i].d]) d = find_set(g[i].d);
            if(d > 0) cnt += g[i].p;
            flag[d] = 1;
            p[d] = p[d-1]; //如果p[d-1]沒用用過 那么p[d-1]就應(yīng)該=d-1
            }

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-12 03:00 by nick
            @oyjpart

            可以舉個例子嗎? 真的有些難懂
            什麼情況會需要用到這個
            抱歉, 謝謝你的回覆

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-12 17:20 by oyjpart
            抱歉 我說的不是很清楚

            首先 我這里的p[]數(shù)組代表的時parent 也就是在樹形的并查集中父結(jié)點的標(biāo)號 比如 如果1節(jié)點(根)的子節(jié)點是2,3 則p[2] = p[3] = 1; 而根節(jié)點的父結(jié)點將會被初始化為自己的標(biāo)號 如p[1] = 1;
            在樹形的并查集中 我們將根節(jié)點定義為這個集合的代表元
            而在這個題目中我們將代表元定義為這個從某一天往上數(shù)第一個空閑的日期 比如 日期
            1 2 3 4 5 6 7 8 9 10
            如果3是空閑(沒有被分配一個商品)而4,5都已經(jīng)分配 那么p[4]=p[5] = 3;
            如果4也是空閑 那么p[3] = 3; p[4] = 4;
            這樣 我們在分配商品的時候 要得到從某一天往上數(shù)第一個空閑的日期 就是直接查找這一天所在集合里面的代表元就可以了
            從另外一個角度上來看 這個集合其實時一個空閑的天 后面跟著一連串的非空閑天
            比如
            1 2 3 4 5 6 7 8 9 10
            如果3是空閑(沒有被分配一個商品)而4,5都已經(jīng)分配 6沒有分配 那這個集合就是3,4,5 其中代表元為3
            以下面這段代碼來作說明吧
            for(i = 0; i<ng; i++) {
            int d = g[i].d;
            if(flag[g[i].d]) d = find_set(g[i].d);
            if(d > 0) cnt += g[i].p;
            flag[d] = 1;
            p[d] = p[d-1]; //如果p[d-1]沒用用過 那么p[d-1]就應(yīng)該=d-1
            }
            如果flag[g[i].d] is true 代表g[i].d這一天已經(jīng)被分配 于是空閑的天就是find_set(g[i].d);
            否則 d = g[i].d; 就是這一天 這個時候集合只有一個元素 就是自己作為代表元
            if(d > 0) cnt += g[i].p; 因為有可能代表元為0(設(shè)置數(shù)據(jù)的時候p[d-1]為了不越界 故意留出0) 實際上代表沒有空閑 比如1,2,3,4都滿了 你要放在3的地方 就會得到0 這個位置 所以要>0才能cnt += g[i].p;
            flag[d] = 1; 接著把剛才找到的空閑處標(biāo)記
            p[d] = p[d-1]; 然后把剛才找到的空閑處的代表元設(shè)置一下
            這里的設(shè)置對于下面2中情況都是對的
            情況1: 1 2 3 4 5
            2空閑 3空閑 我在3處放 然后標(biāo)記p[3] = p[2] = 2;
            情況2: 1 2 3 4 5 6
            2滿 3滿 4空閑 我在4處放 然后標(biāo)記 p[4] = p[3] = 1
            基本上就是這樣了 沒有解釋清楚 真不好意思 :)

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-18 21:51 by nick
            呵呵, 真的很謝謝你回覆這麼說
            我懂
            for(i = 0; i<ng; i++) {
            int d = g[i].d;
            if(flag[g[i].d]) d = find_set(g[i].d);
            if(d > 0) cnt += g[i].p;
            flag[d] = 1;
            p[d] = p[d-1]; //如果p[d-1]沒用用過 那么p[d-1]就應(yīng)該=d-1
            }

            但就是不懂原本程序的 if(flag[d+1]) p[d] = p[d-1]; 這一行的意義在哪

            如果這個程序不加這一行是一定會錯

            但什麼樣的 case 會導(dǎo)致錯誤呢?

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-18 21:56 by nick
            喔喔, 我想到了.. 呵呵, 謝謝你

            原本那樣寫讓我比較不好理解

            不過後來的寫法
            p[d] = p[d-1]; //如果p[d-1]沒用用過 那么p[d-1]就應(yīng)該=d-1

            這邊要 if(d>0) 不然 p[d-1] 會 runtime error ^^

            # re: PKU 1456 Supermarket 并查集加速實例  回復(fù)  更多評論   

            2007-03-19 17:37 by oyjpart
            o 對 呵呵~~ 我改一下
            :)
            国产精品久久久久久久| 国产精品欧美亚洲韩国日本久久| 国产免费久久精品丫丫| 精品久久人人妻人人做精品| 偷窥少妇久久久久久久久| 亚洲国产精品18久久久久久| 久久精品亚洲中文字幕无码麻豆| 久久综合九色综合精品| 久久天天躁狠狠躁夜夜2020| 国产精品99久久久精品无码| 久久精品成人国产午夜| 亚洲伊人久久综合中文成人网| 麻豆成人久久精品二区三区免费 | 亚洲国产成人久久一区WWW| 香蕉久久夜色精品国产2020| 97久久久久人妻精品专区| 亚洲色欲久久久久综合网| 精品午夜久久福利大片| 中文字幕久久波多野结衣av| 国产成人香蕉久久久久| 久久精品无码午夜福利理论片| 久久精品国产99国产精品| 狠狠色婷婷久久一区二区三区 | 国产精品久久久久jk制服| 思思久久99热只有频精品66| 精品国产福利久久久| 人妻少妇久久中文字幕| 久久久精品人妻一区二区三区蜜桃| 99久久综合国产精品二区| 久久亚洲国产精品一区二区| 91精品国产高清91久久久久久| 色偷偷久久一区二区三区| 亚洲精品乱码久久久久久自慰| 久久人妻无码中文字幕| 久久香蕉国产线看观看猫咪?v| 国产午夜福利精品久久| 亚洲国产精品久久久久婷婷老年| 国产精品99久久精品| 国产精品美女久久久久网| 国产精品久久久久久久久| 99久久无色码中文字幕|