• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217940
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            Dominoes
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:1022 Accepted:333

            Description
            A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table:


            The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums.

            Each domino can be turned by 180 degrees keeping its face always upwards.

            What is the smallest number of turns needed to minimise the gap between the top line and the bottom line?

            For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1.
            Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

            Input
            The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table.

            Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one.

            Output
            Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

            Sample Input

            4
            6 1
            1 5
            1 3
            1 2
            

            Sample Output

            1
            

            Source
            CEOI 1997

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?MAXN? = ? 8000 ;
            const ? int ?INF? = ? 1 ? << ? 28 ;

            struct ?DATA? {
            ????
            int ?da[MAXN];
            ????
            int ?dx;
            ????
            int ?q;
            }
            ;

            DATA?dp[
            2 * MAXN];
            bool ?f[ 2 * MAXN];
            int ?queue[MAXN],?front,?rear;
            int ?main()
            {
            ????
            int ?n;
            ????
            int ?a[MAXN],?x,?y;
            ????
            int ?i,?j,?k,?w,?l;
            ????
            int ?d? = ? 0 ;
            ????
            int ?ans? = ?INF;
            ????scanf(
            " %d " ,? & n);
            ????
            for ?(i = 0 ;?i < n;?i ++ )? {
            ????????scanf(
            " %d%d " ,? & x,? & y);
            ????????a[i]?
            = ?x? - ?y;
            ????????d?
            += ?a[i];
            ????}

            ????memset(f,?
            false ,? sizeof (f));
            ????dp[d
            + 7500 ].dx? = ?d;?dp[d + 7500 ].q? = ? 0 ;?f[d + 7500 ]? = ? true ;
            ????
            for ?(i = 0 ;?i < n;?i ++ )?dp[d + 7500 ].da[i]? = ?a[i];
            ????front?
            = ? 0 ;?rear? = ? 0 ;?w? = ? 0 ;
            ????
            do ? {
            ????????
            for ?(i = 0 ;?i < n;?i ++ )? {
            ????????????j?
            = ?dp[d + 7500 ].da[i];
            ????????????k?
            = ?d?? - ?j? * ? 2 ;
            ????????????
            if ?( ! f[k + 7500 ]? || ?dp[k + 7500 ].q? > ?w? + ? 1 )? {
            ????????????????
            if ?(k? == ? 0 )? {
            ????????????????????printf(
            " %d\n " ,?w? + ? 1 );
            ????????????????????system(
            " pause " );
            ????????????????????
            return ? 0 ;
            ????????????????}

            ????????????????f[k
            + 7500 ]? = ? true ;
            ????????????????queue[rear
            ++ ]? = ?k;
            ????????????????dp[k
            + 7500 ].dx? = ?k;
            ????????????????dp[k
            + 7500 ].q? = ?w? + ? 1 ;
            ????????????????
            for ?(l = 0 ;?l < n;?l ++ )?dp[k + 7500 ].da[l]? = ?dp[d + 7500 ].da[l];
            ????????????????dp[k
            + 7500 ].da[i]? = ? - dp[d + 7500 ].da[i];
            ????????????}

            ????????}

            ????????d?
            = ?queue[front ++ ];
            ????????w?
            = ?dp[d + 7500 ].q;
            ????}
            ? while ?(front? <= ?rear);??
            ????j?
            = ? 7500 ;
            ????
            bool ?isFind? = ? false ;
            ????
            for ?(i = 0 ;?i < 7500 ;?i ++ )? {
            ????????
            if ?(f[j + i])? {
            ????????????isFind?
            = ? true ;
            ????????????
            if ?(ans? > ?dp[j + i].q)?ans? = ?dp[j + i].q;
            ????????}

            ????????
            if ?(f[j - i])? {
            ????????????isFind?
            = ? true ;
            ????????????
            if ?(ans? > ?dp[j - i].q)?ans? = ?dp[j - i].q;
            ????????}

            ????????
            if ?(isFind)? break ;
            ????}

            ????printf(
            " %d\n " ,?ans);
            ????system(
            " pause " );
            ????
            return ? 0 ;
            }

            posted on 2006-10-29 20:42 閱讀(808) 評論(0)  編輯 收藏 引用 所屬分類: ACM題目
            欧美国产成人久久精品| 国产美女久久精品香蕉69| 国产AⅤ精品一区二区三区久久| 亚洲精品蜜桃久久久久久| 国产成人久久激情91| 久久久WWW免费人成精品| 亚洲伊人久久大香线蕉综合图片| 久久久久人妻一区精品性色av| 青青青国产精品国产精品久久久久| 色婷婷噜噜久久国产精品12p| 漂亮人妻被黑人久久精品| 久久九九久精品国产| 精品久久久久久无码专区| 香蕉久久影院| 亚洲国产成人久久精品影视| 无码人妻久久一区二区三区免费 | 国产V亚洲V天堂无码久久久| 99久久人人爽亚洲精品美女| 久久久久99精品成人片欧美| 久久精品成人免费国产片小草| 日本强好片久久久久久AAA| 久久久久久久久66精品片| 91精品免费久久久久久久久| 欧美精品久久久久久久自慰| 国产aⅴ激情无码久久| 性做久久久久久久久老女人| 国产精品久久久久一区二区三区 | 久久婷婷五月综合色99啪ak| 久久精品国内一区二区三区| 久久天堂AV综合合色蜜桃网| 国产精品99久久久精品无码| 中文精品99久久国产 | 久久青青国产| 久久99国产精品成人欧美| 好久久免费视频高清| 久久国产乱子精品免费女| 精品久久久久久久无码 | 无码任你躁久久久久久| 久久中文字幕无码专区| 亚洲&#228;v永久无码精品天堂久久| 国产成人精品久久亚洲高清不卡 |