• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年2月>
            28293031123
            45678910
            11121314151617
            18192021222324
            25262728123
            45678910

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217985
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            開始時候粗心,狀態轉移時候k寫成k-1了,查了n久.

            The Mailboxes Manufacturers Problem
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:299 Accepted:227

            Description

            In the good old days when Swedish children were still allowed to blowup their fingers with fire-crackers, gangs of excited kids would plague certain smaller cities during Easter time, with only one thing in mind: To blow things up. Small boxes were easy to blow up, and thus mailboxes became a popular target. Now, a small mailbox manufacturer is interested in how many fire-crackers his new mailbox prototype can withstand without exploding and has hired you to help him. He will provide you with k (1 ≤ k ≤ 10) identical mailbox prototypes each fitting up to m (1 ≤ m ≤ 100) crackers. However, he is not sure of how many firecrackers he needs to provide you with in order for you to be able to solve his problem, so he asks you. You think for a while and then say, “Well,if I blow up a mailbox I can’t use it again, so if you would provide me with only k = 1 mailboxes, I would have to start testing with 1 cracker, then 2 crackers, and so on until it finally exploded. In the worst case, that is if it does not blow up even when filled with m crackers, I would need 1 + 2 + 3 + … + m = m × (m + 1) ? 2 crackers. If m = 100 that would mean more than 5000 fire-crackers!” “That’s too many,” he replies. “What if I give you more than k = 1 mailboxes? Can you find a strategy that requires less crackers?”

            Can you? And what is the minimum number of crackers that you should ask him to provide you with?

            You may assume the following:

            1. If a mailbox can withstand x fire-crackers, it can also withstand x ? 1 fire-crackers.
            2. Upon an explosion, a mailbox is either totally destroyed (blown up) or unharmed, which means that it can be reused in another test explosion.

            Note: If the mailbox can withstand a full load of m fire-crackers, then the manufacturer will of course be satisfied with that answer. But otherwise he is looking for the maximum number of crackers that his mailboxes can withstand.

            Input

            The input starts with a single integer N (1 ≤ N ≤ 10) indicating the number of test cases to follow. Each test case is described by a line containing two integers: k and m, separated by a single space.

            Output

            For each test case print one line with a single integer indicating the minimum number of fire-crackers that is needed, in the worst case, in order to figure out how many crackers the mailbox prototype can withstand.

            Sample Input

            4
            1 10
            1 100
            3 73
            5 100

            Sample Output

            55
            5050
            382
            495

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2002

            #include?<iostream>
            using?namespace?std;

            const?int?INF?=?1?<<?28;

            int?d[11][101][101];
            int?sum(int?i,?int?j)?{
            ????
            int?ret?=?0,?k;
            ????
            for?(k=i;?k<=j;?k++)?ret?+=?k;
            ????return?ret;
            }

            int?max(int?a,?int?b)?{
            ????return?a?
            >?b???a?:?b;
            }


            int?main()?{
            ????
            int?caseTime;?
            ????
            int?i,?j,?k,?t,?K,?M,?l;
            ????scanf(
            "%d",?&caseTime);
            ????
            ????
            while?(caseTime--)?{
            ????????scanf(
            "%d%d",?&K,?&M);
            ????????
            for?(i=1;?i<=M;?i++)?{
            ????????????
            for?(j=i;?j<=M;?j++)?{
            ????????????????d[
            1][i][j]?=?sum(i,?j);
            ????????????}
            ????????}
            ????????
            for?(k=2;?k<=K;?k++)?{
            ????????????
            for?(l=0;?l<M;?l++)?{
            ????????????????
            for?(i=1;?i+l<=M;?i++)?{
            ????????????????????j?
            =?i?+?l;
            ????????????????????
            if?(i?==?j)?{
            ????????????????????????d[k][i][j]?
            =?i;
            ????????????????????????continue;
            ????????????????????}
            ????????????????????d[k][i][j]?
            =?INF;
            ????????????????????
            for?(t=i;?t<=j;?t++)?{
            ????????????????????????
            int?tmp;
            ????????????????????????
            if?(t?==?i)?tmp?=?d[k][i+1][j];
            ????????????????????????
            else?if?(t?==?j)?tmp?=?d[k-1][i][j-1];
            ????????????????????????
            else?tmp?=?max(d[k-1][i][t-1],?d[k-1][t+1][j]);
            ????????????????????????tmp?
            =?max(d[k-1][i][t-1],?d[k][t+1][j]);
            ????????????????????????
            if?(d[k][i][j]?>?t?+?tmp)?d[k][i][j]?=?t?+?tmp;
            ????????????????????}
            ????????????????}
            ????????????}
            ????????}
            ????????printf(
            "%d\n",?d[K][1][M]);
            ????}

            ????return?
            0;
            }
            posted on 2007-03-26 00:41 閱讀(2213) 評論(2)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2904 3維dp 2007-03-27 16:31 litianze
            我是一個剛剛開始做acm題的菜鳥,望大哥幫幫忙,可以介紹一下解決的思想嗎?小弟先謝謝了!  回復  更多評論
              
            # re: pku2904 3維dp 2007-03-27 23:04 
            dp[k][i][j]表示k個郵筒時候放鞭炮數為i..j時候的最優值

            轉移方程為
            dp[k][i][j] = min{t+max(d[k-1][i][t-1],d[k][t+1][j])};

            狀態轉移時候就是考慮選t個鞭炮放時候爆或不爆  回復  更多評論
              
            久久99精品久久久久久齐齐| 久久精品久久久久观看99水蜜桃| 国内精品人妻无码久久久影院 | 99久久做夜夜爱天天做精品| 久久久久久精品成人免费图片 | 日本欧美国产精品第一页久久| 午夜精品久久久久| 久久久久AV综合网成人| 狠狠色丁香婷婷综合久久来来去| 久久久久久久久久久| 大蕉久久伊人中文字幕| 久久人与动人物a级毛片| 久久国产精品一区二区| 人妻久久久一区二区三区| 精品免费久久久久国产一区| 久久精品无码午夜福利理论片| 国产成人精品免费久久久久| 精品久久久久久久| 久久精品国产第一区二区| 欧美噜噜久久久XXX| 久久一区二区免费播放| 一级做a爱片久久毛片| 久久人人妻人人爽人人爽| 四虎影视久久久免费| 国产AV影片久久久久久| 国产农村妇女毛片精品久久| 内射无码专区久久亚洲| 亚洲中文字幕无码久久2020| 日韩欧美亚洲综合久久影院d3| 亚洲欧美久久久久9999| 99久久精品影院老鸭窝| 亚洲中文字幕伊人久久无码 | 久久亚洲精品人成综合网| 国产精品美女久久久| 人妻无码精品久久亚瑟影视| 久久精品午夜一区二区福利 | 91麻精品国产91久久久久| 亚洲人成无码网站久久99热国产| 亚洲精品乱码久久久久久按摩| 国产精品日韩深夜福利久久| 无码AV波多野结衣久久|