• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218020
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            寫了個比較通用的堆,可直接用作優先隊列

            Silver Cow Party
            Time Limit:2000MS  Memory Limit:65536K
            Total Submit:1112 Accepted:326

            Description

            One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

            Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

            Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

             

            Input
            Line 1: Three space-separated integers, respectively: N, M, and X
            Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

            Output
            Line 1: One integer: the maximum of time any one cow must walk.

            Sample Input

            4 8 2
            1 2 4
            1 3 2
            1 4 7
            2 1 1
            2 3 5
            3 1 2
            3 4 4
            4 2 3

             

            Sample Output

            10

             

            Hint
            Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

            Source
            USACO 2007 February Silver



            #include <iostream>
            using namespace std;

            const int INF = 1 << 28;

            int adj[1001][1001], adjw[1001][1001], na[1001];
            int n, m, x;


            //heap sink,swim,getmin,insert參數均為外部編號,wt為其權值
            int heap[100001], id[100001], hsize;
            int *key;
            void init(int s, int *wt) {
                
            int i;
                hsize 
            = s; 
                key 
            = wt;
                
            for (i=1; i<=hsize; i++{
                    heap[i] 
            = i;
                    id[i] 
            = i;
                }

            }

            void swim(int u) {
                
            int p = id[u], q = p >> 1, ku = key[u];
                
            while (q && ku < key[heap[q]]) {
                    id[heap[q]] 
            = p;
                    heap[p] 
            = heap[q];
                    p 
            = q;
                    q 
            = p >> 1;
                }

                id[u] 
            = p;
                heap[p] 
            = u;
            }

            void sink(int u) {
                
            int p = id[u],q = p << 1, ku = key[u];
                
            while (q <= hsize) {
                    
            if (q < hsize && key[heap[q+1]] < key[heap[q]]) q++;
                    
            if (key[heap[q]] >= ku) break;
                    id[heap[q]] 
            = p;
                    heap[p] 
            = heap[q];
                    p 
            = q; 
                    q 
            = p << 1;
                }

                id[u] 
            = p;
                heap[p] 
            = u;
            }

            int getmin() {
                
            int ret = heap[1];
                id[ret] 
            = -1;
                id[heap[hsize]] 
            = 1;
                heap[
            1= heap[hsize];
                hsize
            --;
                sink(heap[
            1]);
                
            return ret;
            }

            void insert(int u) {
                heap[
            ++hsize] = u;
                id[u] 
            = hsize;
                swim(u);
            }

            void build() {
                
            int i;
                
            for (i=hsize/2; i>0; i--) sink(heap[i]);
            }

            bool isEmpty() {
                
            return hsize == 0;
            }

            int dijkstraHeap(int beg, int end=-1{
                
            int i, j, k, u, v, w;
                
            int dist[1001], chk[1001];
                
            for (i=1; i<=n; i++{
                    dist[i] 
            = INF;
                    chk[i] 
            = 0;
                }

                init(n, dist);
                dist[beg] 
            = 0; swim(beg);
                
            while (!isEmpty()) {
                    u 
            = getmin();
                    
            if (u == end) break;
                    chk[u] 
            = 1;
                    
            for (i=0; i<na[u]; i++{
                        v 
            = adj[u][i];
                        w 
            = adjw[u][i];
                        
            if (dist[v] > dist[u] + w) {
                            dist[v] 
            = dist[u] + w;
                            swim(v);
                        }

                    }

                }

                
            if (end == -1return dist[n];
                
            return dist[end];
            }


            int main() {
                
            int i, j, k, u, v, w;
                
            int val[1001];
                scanf(
            "%d%d%d"&n, &m, &x);
                
            for (i=0; i<m; i++{
                    scanf(
            "%d%d%d"&u, &v, &w);
                    adj[u][na[u]] 
            = v; 
                    adjw[u][na[u]] 
            = w;
                    na[u]
            ++;
                }

               
                dijkstraHeap(x);
                memcpy(val, key, 
            sizeof(val));
                
                
            int ans = 0;
                
            for (i=1; i<=n; i++{
                    
            int tmp = dijkstraHeap(i,x);
                    
            if (tmp+val[i] > ans) ans = tmp + val[i];
                }

                
                printf(
            "%d\n", ans);
                
            return 0;
            }
            posted on 2007-07-23 20:51 閱讀(1290) 評論(4)  編輯 收藏 引用 所屬分類: 數據結構與算法ACM題目

            FeedBack:
            # re: pku3268 dij+heap 2007-07-27 08:41 oyjpart
            終于更新blog了。。。  回復  更多評論
              
            # re: pku3268 dij+heap 2007-08-01 20:29 relic
            不必n次dijkstra,只要把所有邊反向,再來一次dijkstra就可以了。算上第一次一共兩次dij  回復  更多評論
              
            # re: pku3268 dij+heap 2007-08-03 22:58 
            偷懶了:)  回復  更多評論
              
            # re: pku3268 dij+heap 2007-09-18 13:16 drizzlecrj
            @relic
            re  回復  更多評論
              
            国产精品久久波多野结衣| 久久久午夜精品福利内容| 亚洲精品国产字幕久久不卡 | 婷婷久久综合九色综合98| 少妇久久久久久被弄高潮| 国产精品久久久天天影视| 亚洲国产精品婷婷久久| 香蕉久久久久久狠狠色| 久久精品欧美日韩精品| 国产精品gz久久久| 久久一区二区三区免费| 久久精品99久久香蕉国产色戒 | 99国产欧美精品久久久蜜芽| 伊人丁香狠狠色综合久久| 香蕉久久永久视频| 精品国产福利久久久| 久久亚洲视频| 99久久国产免费福利| 久久久久久国产精品无码下载| 久久福利青草精品资源站免费| 午夜精品久久久久久影视777| 69SEX久久精品国产麻豆| 亚洲国产天堂久久综合| 狠狠色婷婷综合天天久久丁香| 久久无码高潮喷水| 精品国产热久久久福利| 精品无码久久久久久午夜| 久久国产欧美日韩精品| 狠狠人妻久久久久久综合| 99久久久精品免费观看国产| 久久狠狠爱亚洲综合影院| 久久中文字幕精品| 青青久久精品国产免费看| 久久夜色精品国产亚洲| 精品久久久久久无码中文字幕一区 | 久久精品无码专区免费 | 日产精品久久久久久久| 日韩久久无码免费毛片软件| 久久国产成人午夜AV影院| 亚洲国产精品热久久| 国产综合精品久久亚洲|