• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊(cè)

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 216468
            • 排名 - 117

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            BellmanFord實(shí)現(xiàn)

            The Doors

            Time limit: 1 Seconds?? Memory limit: 32768K??
            Total Submit: 214?? Accepted Submit: 63??

            You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length.


            Input

            The input data for the illustrated chamber would appear as follows.

            2
            4 2 7 8 9
            7 3 4.5 6 7

            The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.


            Output

            The output file should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.


            Sample Input

            1
            5 4 6 7 8
            2
            4 2 7 8 9
            7 3 4.5 6 7
            -1


            Sample Output

            10.00
            10.06

            #include?<iostream>
            #include?
            <cmath>
            using?namespace?std;

            const?double?INF?=?2000000000;
            const?int?MAXN?=?100;

            struct?POINT
            {
            ????
            double?x,?y;
            }
            ;
            struct?EDGE
            {
            ????
            int?u,?v;
            }
            ;

            double?g[MAXN][MAXN];
            EDGE?e[MAXN
            *MAXN];
            int?n;
            int?i,?j;
            double?wX[20];
            double?pY[20][4];
            double?x;
            POINT?p[MAXN];
            int?pSize;
            int?eSize;

            double?Dis(POINT?a,?POINT?b)
            {
            ????
            return?sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
            }


            double?Cross(double?x1,?double?y1,?double?x2,?double?y2,?double?x3,?double?y3)
            {
            ????
            return?(x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
            }


            bool?IsOk(POINT?a,?POINT?b)
            {
            ????
            if?(a.x?>=?b.x)?return?false;
            ????
            int?i,?j;
            ????
            bool?flag?=?true;
            ????i?
            =?0;
            ????
            while?(wX[i]?<=?a.x?&&?i?<?n)?{
            ????????i
            ++;
            ????}

            ????
            while?(wX[i]?<?b.x?&&?i?<?n)?{
            ????????
            if?(Cross(a.x,?a.y,?b.x,?b.y,?wX[i],?0)
            ????????
            *Cross(a.x,?a.y,?b.x,?b.y,?wX[i],?pY[i][0])?<?0
            ????????
            ||?Cross(a.x,?a.y,?b.x,?b.y,?wX[i],?pY[i][1])
            ????????
            *Cross(a.x,?a.y,?b.x,?b.y,?wX[i],?pY[i][2])?<?0
            ????????
            ||?Cross(a.x,?a.y,?b.x,?b.y,?wX[i],?pY[i][3])
            ????????
            *Cross(a.x,?a.y,?b.x,?b.y,?wX[i],?10)?<?0)?{
            ????????????flag?
            =?false;
            ????????????
            goto?ou;
            ????????}

            ????????i
            ++;
            ????}

            ????ou:;
            ????
            return?flag;
            }


            double?BellmanFord(int?beg,?int?end)
            {
            ????
            double?d[MAXN];
            ????
            int?i,?j;
            ????
            for?(i=0;?i<MAXN;?i++)?{
            ????????d[i]?
            =?INF;
            ????}

            ????d[beg]?
            =?0;
            ????
            bool?ex?=?true;
            ????
            for?(i=0;?i<pSize?&&?ex;?i++)?{
            ????????ex?
            =?false;
            ????????
            for?(j=0;?j<eSize;?j++)?{
            ????????????
            if?(d[e[j].u]?<?INF?&&?d[e[j].v]?>?d[e[j].u]?+?g[e[j].u][e[j].v])?{
            ????????????????d[e[j].v]?
            =?d[e[j].u]?+?g[e[j].u][e[j].v];
            ????????????????ex?
            =?true;
            ????????????}

            ????????}

            ????}

            ????
            return?d[end];
            }


            void?Solve()
            {
            ????p[
            0].x?=?0;
            ????p[
            0].y?=?5;
            ????pSize?
            =?1;
            ????
            for?(i=0;?i<n;?i++)?{
            ????????scanf(
            "%lf",?&wX[i]);
            ????????
            for?(j=0;?j<4;?j++)?{
            ????????????p[pSize].x?
            =?wX[i];
            ????????????scanf(
            "%lf",?&p[pSize].y);
            ????????????pY[i][j]?
            =?p[pSize].y;
            ????????????pSize
            ++;
            ????????}

            ????}

            ????p[pSize].x?
            =?10;
            ????p[pSize].y?
            =?5;
            ????pSize
            ++;
            ????
            for?(i=0;?i<pSize;?i++)?{
            ????????
            for?(j=0;?j<pSize;?j++)?{
            ????????????g[i][j]?
            =?INF;
            ????????}

            ????}

            ????eSize?
            =?0;
            ????
            for?(i=0;?i<pSize;?i++)?{
            ????????
            for?(j=i+1;?j<pSize;?j++)?{
            ????????????
            if?(IsOk(p[i],?p[j]))?{
            ????????????????g[i][j]?
            =?Dis(p[i],?p[j]);
            ????????????????e[eSize].u?
            =?i;
            ????????????????e[eSize].v?
            =?j;
            ????????????????eSize
            ++;
            ????????????}

            ????????}

            ????}

            ????printf(
            "%.2lf\n",?BellmanFord(0,?pSize-1));
            }


            int?main()
            {
            ????
            while?(scanf("%d",?&n)?!=?EOF)
            ????
            {
            ????????
            if?(n?==?-1)?break;
            ????????Solve();
            ????}

            ????
            return?0;
            }

            posted on 2006-10-09 01:05 閱讀(487) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM題目
            中文字幕久久精品无码| 国产精品久久久久久影院| 久久国产成人精品国产成人亚洲| 国产精品99久久不卡| 亚洲国产成人精品女人久久久| 91精品国产91热久久久久福利 | 无码AV中文字幕久久专区| 久久99国产精品久久| 热久久国产欧美一区二区精品| 久久青青草原综合伊人| 亚洲精品乱码久久久久久蜜桃 | 亚洲精品99久久久久中文字幕 | 99久久综合国产精品二区| 99国产精品久久久久久久成人热| 国产精品久久永久免费| 成人久久综合网| 亚洲精品高清国产一久久| 亚洲国产成人久久综合一| 国产福利电影一区二区三区久久久久成人精品综合| 99国产精品久久| 久久99精品久久久久久秒播| 日本国产精品久久| 97精品伊人久久大香线蕉| 国产精品99久久精品爆乳| 久久久国产精品| www亚洲欲色成人久久精品| 久久er国产精品免费观看8| 超级97碰碰碰碰久久久久最新| 一本色道久久99一综合| 91精品国产乱码久久久久久| 久久中文字幕一区二区| 亚洲欧美成人久久综合中文网| 天天爽天天狠久久久综合麻豆| 久久99国产精品二区不卡| 亚洲日本久久久午夜精品| 久久久久亚洲精品天堂久久久久久| 久久国产精品99久久久久久老狼| 久久国产午夜精品一区二区三区| 久久这里都是精品| 久久九九亚洲精品| 久久人人爽人人爽人人爽|