• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217843
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            Antenna Placement
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:380 Accepted:125

            Description
            The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

            Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

            Input
            On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

            Output
            For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

            Sample Input

            2
            7 9
            ooo**oooo
            **oo*ooo*
            o*oo**o**
            ooooooooo
            *******oo
            o*o*oo*oo
            *******oo
            10 1
            *
            *
            *
            o
            *
            *
            *
            *
            *
            *
            

            Sample Output

            17
            5

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2001

            myCode:

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?INF? = ? 1 ? << ? 28 ;

            int ?n,?r,?c;
            int ?e[ 11 ]? = ? { 1 ,? 2 ,? 4 ,? 8 ,? 16 ,? 32 ,? 64 ,? 128 ,? 256 ,? 512 ,? 1024 } ;
            char ?m[ 50 ][ 20 ];
            int ?d[ 50 ][ 1024 ];
            int ?b[ 20 ];
            int ?cc[ 20 ];
            int ?ss;

            void ?Try( int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?i = 0 ;?i < c;?i ++ )? {
            ????????????k?
            += ?b[i]? * ?e[i];
            ????????}

            ????????
            if ?(d[ 0 ][k]? == ? - 1 ? || ?d[ 0 ][k]? > ?s)
            ????????????d[
            0 ][k]? = ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(m[ 0 ][x]? == ? ' o ' )? {
            ????????Try(x
            + 1 ,?s);
            ????}
            ? else ? if ?(m[ 0 ][x]? == ? ' * ' )? {
            ????????
            int ?t1? = ?b[x],?t2? = ?b[x + 1 ],?t3? = ?s;
            ????????b[x]?
            = ? 1 ;?b[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????Try(x
            + 2 ,?s);
            ????????b[x]?
            = ?t1;?b[x + 1 ]? = ?t2;?s? = ?t3;
            ????????
            if ?(r? != ? 1 ? || ?m[ 0 ][x]? == ? ' o ' )?Try(x + 1 ,?s);
            ????}
            ??
            }


            void ?DFS( int ?i,? int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?j = 0 ;?j < c;?j ++ )? {
            ????????????k?
            += ?cc[j]? * ?e[j];
            ????????}

            ????????
            if ?(d[i][k]? == ? - 1 ? || ?d[i][k]? > ?ss? + ?s)
            ????????????d[i][k]?
            = ?ss? + ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(b[x]? == ? 0 )? {
            ????????
            if ?(m[i - 1 ][x]? == ? ' * ' )? {
            ????????????cc[x]?
            = ? 1 ;?s? += ? 1 ;
            ????????????DFS(i,?x
            + 1 ,?s);
            ????????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}

            ????????}

            ????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}
            ??????
            ????}

            }


            void ?init()
            {
            ????memset(d[
            0 ],? - 1 ,? sizeof (d[ 0 ]));
            ????memset(b,?
            0 ,? sizeof (b));
            ????Try(
            0 ,? 0 );
            }


            void ?Solve()?
            {
            ????
            int ?i,?j,?k;
            ????init();
            ????
            for ?(i = 0 ;?i < r - 1 ;?i ++ )? {
            ????????memset(d[i
            + 1 ],? - 1 ,? sizeof (d[i + 1 ]));
            ????????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????????
            if ?(d[i][k]? != ? - 1 )? {
            ????????????????
            int ?t? = ?k,?j? = ? 0 ,?kk? = ? 0 ;
            ????????????????memset(b,?
            0 ,? sizeof (b));
            ????????????????memset(cc,?
            0 ,? sizeof (cc));
            ????????????????
            while ?(t? != ? 0 )? {
            ????????????????????b[j
            ++ ]? = ?t? % ? 2 ;
            ????????????????????t?
            /= ? 2 ;
            ????????????????}

            ????????????????ss?
            = ?d[i][k];
            ????????????????DFS(i
            + 1 ,? 0 ,? 0 );
            ????????????}

            ????????}

            ????}

            ????
            int ?ans? = ?INF;
            ????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????
            if ?(d[r - 1 ][k]? != ? - 1 ? && ?d[r - 1 ][k]? < ?ans)? {
            ????????????ans?
            = ?d[r - 1 ][k];
            ????????}

            ????}

            ????cout?
            << ?ans? << ?endl;
            }


            int ?main()
            {?
            ????cin?
            >> ?n;
            ????
            while ?(n -- ? != ? 0 )? {
            ????????cin?
            >> ?r? >> ?c;
            ????????
            for ?( int ?i = 0 ;?i < r;?i ++ )?cin? >> ?m[i];
            ????????Solve();
            ????}

            ????system(
            " pause " );
            ????
            return ? 0 ;
            }


            ghost_wei大牛的code,? 放出來供大家學習,? 用了滾動數組優化, 而且位運算用得出神入化:)
            #include<iostream.h>
            #include?
            <fstream.h>
            const?int?k2[11]={1,2,4,8,16,32,64,128,256,512,1024};
            int?n,m,c[2][1024];
            char?d[40][10];
            inline?
            void?min(int?&i,int?j)
            {
            ????
            if?(i>j)?i=j;
            }

            void?work()
            {
            ????
            int?i,j,km,k,e7,e8,l,t,ans;
            ????km
            =k2[m];
            ????
            for?(i=0;i<km;i++)?c[0][i]=100000;
            ????c[
            0][0]=0;
            ????e7
            =0;?e8=1;
            ????
            for?(i=0;i<n;i++)
            ????
            {
            ????????
            for?(j=0;j<km;j++)?c[e8][j]=100000;
            ????????
            for?(j=1;j<m;j++)
            ????????????
            if?(d[i][j]=='*')
            ????????????????
            for?(k=0;k<km;k++)
            ????????????????????min(c[e7][k
            |k2[j]|k2[j-1]],c[e7][k]+1);
            ????????
            for?(k=0;k<km;k++)
            ????????
            {
            ????????????l
            =0;?t=0;
            ????????????
            for?(j=0;j<m;j++)?
            ????????????????
            if?(!(k&k2[j])&&d[i][j]=='*')
            ????????????????
            {
            ????????????????????l
            +=k2[j];
            ????????????????????t
            ++;
            ????????????????}

            ????????????min(c[e8][l],c[e7][k]
            +t);
            ????????}

            ????????e7
            =e7^1;?e8=e8^1;
            ????}

            ????ans
            =100000;
            ????
            for?(k=0;k<km;k++)
            ????????min(ans,c[e7][k]);
            ????cout
            <<ans<<endl;
            }

            int?main()
            {
            ????
            int?tc,cas,i,j;
            ????cin
            >>tc;
            ????
            for?(cas=1;cas<=tc;cas++)
            ????
            {
            ????????cin
            >>n>>m;
            ????????
            for?(i=0;i<n;i++)
            ????????????
            for(j=0;j<m;j++)
            ????????????????cin
            >>d[i][j];
            ????????work();
            ????}

            ????
            return?0;
            }

            posted on 2006-10-18 17:29 閱讀(2134) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: 狀態壓縮DP, pku3020[未登錄] 2007-04-30 11:16 Leon
            Ghost的算法真是精辟,只是狀態數組定義的空間可能會不夠,代碼的line 30  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2007-06-30 10:35 姜雨生
            真是太好了
            以后多向你請教  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020[未登錄] 2008-07-02 08:22 菜鳥
            大牛解釋一下這一段吧:
            for (i=0;i<n;i++)
            {
            for (j=0;j<km;j++) c[e8][j]=100000;
            for (j=1;j<m;j++)
            if (d[i][j]=='*')
            for (k=0;k<km;k++)
            min(c[e7][k|k2[j]|k2[j-1]],c[e7][k]+1);
            for (k=0;k<km;k++)
            {
            l=0; t=0;
            for (j=0;j<m;j++)
            if (!(k&k2[j])&&d[i][j]=='*')
            {
            l+=k2[j];
            t++;
            }
            min(c[e8][l],c[e7][k]+t);
            }
            e7=e7^1; e8=e8^1;
            }
              回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2008-08-04 22:56 ecnu
            二分匹配做的。。關鍵是狀態壓縮不會。5555...  回復  更多評論
              
            99久久久精品免费观看国产| 亚洲欧美日韩精品久久| 久久精品一区二区影院| 久久综合综合久久97色| 国产精品久久久天天影视| 狠狠色丁香久久综合婷婷| 久久精品人人槡人妻人人玩AV | 久久精品无码av| 91久久九九无码成人网站| 国产成人精品综合久久久| 久久精品国产黑森林| 亚洲精品第一综合99久久| 久久精品国产亚洲AV不卡| 亚洲AV日韩精品久久久久| 97久久精品无码一区二区| AA级片免费看视频久久| 国产精品无码久久综合网| 欧美国产成人久久精品| 精产国品久久一二三产区区别 | 日韩AV毛片精品久久久| 国产精品久久久久久久app| 狠狠色噜噜色狠狠狠综合久久 | 久久久久九国产精品| 亚洲人成网站999久久久综合| 伊人久久大香线蕉av不变影院| 久久精品中文字幕无码绿巨人| 97超级碰碰碰碰久久久久| 久久99热这里只有精品国产| 久久久久亚洲AV片无码下载蜜桃| 91精品国产乱码久久久久久| 激情综合色综合久久综合| 一本色道久久综合狠狠躁| 国产成人综合久久久久久| 亚洲欧美成人综合久久久| 国产女人aaa级久久久级| 香蕉久久夜色精品升级完成| 久久不见久久见免费影院www日本| 亚洲va久久久噜噜噜久久| 久久影视综合亚洲| 国产AV影片久久久久久| 亚洲中文字幕无码一久久区|