• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 216652
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include? < iostream >
            using ? namespace ?std;
            const ? int ?MAXN? = ? 200001 ;

            class ?UFset
            {
            public :
            ????
            int ?parent[MAXN];
            ????UFset();
            ????
            int ?Find( int );
            ????
            void ?Union( int ,? int );
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            - 1 ,? sizeof (parent));
            }


            int ?UFset::Find( int ?x)
            {
            ????
            if ?(parent[x]? < ? 0 )
            ????????
            return ?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            = ?Find(parent[x]);
            ????????
            return ?parent[x];
            ????}
            // ?壓縮路徑
            }


            void ?UFset::Union( int ?x,? int ?y)
            {
            ????
            int ?pX? = ?Find(x);
            ????
            int ?pY? = ?Find(y);
            ????
            int ?tmp;
            ????
            if ?(pX? != ?pY)
            ????
            {
            ????????tmp?
            = ?parent[pX]? + ?parent[pY];? // ?加權(quán)合并
            ???????? if ?(parent[pX]? > ?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            = ?pY;
            ????????????parent[pY]?
            = ?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            = ?pX;
            ????????????parent[pX]?
            = ?tmp;
            ????????}

            ????}

            }


            int ?f[(MAXN + 1 ) * 3 ]? = ? { 0 } ;
            int ?n,?m;

            void ?initTree()
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]?
            = ?n;
            ????????c?
            = ?c? * ? 2 ;
            ????????r?
            = ?(l? + ?r)? / ? 2 ;
            ????}

            ????f[c]?
            = ?n; // 葉子初始化
            }


            void ?insertTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            ++ ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            ++ ; // 葉子增加1
            }


            void ?delTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            -- ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            -- ; // 葉子減少1
            }


            int ?searchTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????mid?
            = ?(l? + ?r)? / ? 2 ;
            ????????
            if ?(k? <= ?f[ 2 * c + 1 ])
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -= ?f[ 2 * c + 1 ];
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????
            return ?l;
            }


            int ?main()
            {
            ????
            int ?i,?j;
            ????
            int ?x,?y;
            ????
            int ?k;
            ????
            int ?l,?r;
            ????
            int ?cmd;
            ????
            int ?px,?py;
            ????
            int ?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            " %d%d " ,? & n,? & m);
            ????initTree();
            ????
            for ?(i = 0 ;?i < m;?i ++ )
            ????
            {
            ????????scanf(
            " %d " ,? & cmd);
            ????????
            if ?(cmd? == ? 0 )
            ????????
            {
            ????????????scanf(
            " %d%d " ,? & x,? & y);
            ????????????px?
            = ?UFS.Find(x);
            ????????????py?
            = ?UFS.Find(y);
            ????????????
            if ?(px? != ?py)
            ????????????
            {
            ????????????????tx?
            = ? - UFS.parent[px];
            ????????????????ty?
            = ? - UFS.parent[py];
            ????????????????tz?
            = ?tx? + ?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            " %d " ,? & k);
            ????????????printf(
            " %d\n " ,?searchTree(k));
            ????????}

            ????}

            ????
            return ? 0 ;
            }
            posted on 2006-09-06 13:28 閱讀(808) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-22 13:24 A3
            可否講解一下線段樹部分  回復(fù)  更多評論
              
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-22 17:47 
            把區(qū)間劃出來, 節(jié)點(diǎn)(非葉子), 表示該區(qū)間里面含有多少個(gè)元素。
            如果 n = 10;
            而集合大小分別是 1, 1, 2, 6;

            則 區(qū)間(1-10) = 4; 區(qū)間(1-5) = 3;

            就這樣用線段樹動(dòng)態(tài)維護(hù)每次集合合并后的集合大小。

            初始化(1-10) = 10;
            因?yàn)殚_始時(shí), 集合大小為1, 1, 1, 1, 1, 1, 1, 1, 1, 1  回復(fù)  更多評論
              
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-24 19:53 Optimistic
            偶的第一次呢 靜待。。。  回復(fù)  更多評論
              
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-24 22:23 
            +U ^_^  回復(fù)  更多評論
              
            久久夜色精品国产www| 久久99精品久久久久久秒播| 无码人妻少妇久久中文字幕蜜桃| 97精品伊人久久久大香线蕉| 久久伊人精品一区二区三区| 无码人妻少妇久久中文字幕蜜桃| 精品综合久久久久久888蜜芽| 国产精品视频久久久| 久久婷婷五月综合色99啪ak| 无码人妻久久一区二区三区蜜桃| 婷婷五月深深久久精品| 青青草原综合久久| 久久毛片一区二区| 99精品国产在热久久| 久久综合给合综合久久| 亚洲va久久久噜噜噜久久狠狠| 久久精品国产99国产精偷| 久久久久一本毛久久久| 色妞色综合久久夜夜| 国产精品成人99久久久久 | 久久99免费视频| 蜜桃麻豆www久久国产精品| 99久久国产热无码精品免费| 久久伊人影视| 久久国产精品成人免费| 久久久久久久精品妇女99| 大美女久久久久久j久久| 亚洲日韩中文无码久久| 久久久久久青草大香综合精品| 国产亚洲美女精品久久久2020| 伊人久久大香线焦综合四虎| 97精品伊人久久大香线蕉| 久久精品国产91久久综合麻豆自制 | 久久九九全国免费| 亚洲国产另类久久久精品黑人| 精品久久久久中文字| 国产一区二区三区久久| 欧美一区二区三区久久综| 伊色综合久久之综合久久| 久久久WWW免费人成精品| 久久精品国产精品青草app|