• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年6月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 216593
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            Antenna Placement
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:380 Accepted:125

            Description
            The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

            Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

            Input
            On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

            Output
            For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

            Sample Input

            2
            7 9
            ooo**oooo
            **oo*ooo*
            o*oo**o**
            ooooooooo
            *******oo
            o*o*oo*oo
            *******oo
            10 1
            *
            *
            *
            o
            *
            *
            *
            *
            *
            *
            

            Sample Output

            17
            5

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2001

            myCode:

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?INF? = ? 1 ? << ? 28 ;

            int ?n,?r,?c;
            int ?e[ 11 ]? = ? { 1 ,? 2 ,? 4 ,? 8 ,? 16 ,? 32 ,? 64 ,? 128 ,? 256 ,? 512 ,? 1024 } ;
            char ?m[ 50 ][ 20 ];
            int ?d[ 50 ][ 1024 ];
            int ?b[ 20 ];
            int ?cc[ 20 ];
            int ?ss;

            void ?Try( int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?i = 0 ;?i < c;?i ++ )? {
            ????????????k?
            += ?b[i]? * ?e[i];
            ????????}

            ????????
            if ?(d[ 0 ][k]? == ? - 1 ? || ?d[ 0 ][k]? > ?s)
            ????????????d[
            0 ][k]? = ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(m[ 0 ][x]? == ? ' o ' )? {
            ????????Try(x
            + 1 ,?s);
            ????}
            ? else ? if ?(m[ 0 ][x]? == ? ' * ' )? {
            ????????
            int ?t1? = ?b[x],?t2? = ?b[x + 1 ],?t3? = ?s;
            ????????b[x]?
            = ? 1 ;?b[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????Try(x
            + 2 ,?s);
            ????????b[x]?
            = ?t1;?b[x + 1 ]? = ?t2;?s? = ?t3;
            ????????
            if ?(r? != ? 1 ? || ?m[ 0 ][x]? == ? ' o ' )?Try(x + 1 ,?s);
            ????}
            ??
            }


            void ?DFS( int ?i,? int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?j = 0 ;?j < c;?j ++ )? {
            ????????????k?
            += ?cc[j]? * ?e[j];
            ????????}

            ????????
            if ?(d[i][k]? == ? - 1 ? || ?d[i][k]? > ?ss? + ?s)
            ????????????d[i][k]?
            = ?ss? + ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(b[x]? == ? 0 )? {
            ????????
            if ?(m[i - 1 ][x]? == ? ' * ' )? {
            ????????????cc[x]?
            = ? 1 ;?s? += ? 1 ;
            ????????????DFS(i,?x
            + 1 ,?s);
            ????????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}

            ????????}

            ????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}
            ??????
            ????}

            }


            void ?init()
            {
            ????memset(d[
            0 ],? - 1 ,? sizeof (d[ 0 ]));
            ????memset(b,?
            0 ,? sizeof (b));
            ????Try(
            0 ,? 0 );
            }


            void ?Solve()?
            {
            ????
            int ?i,?j,?k;
            ????init();
            ????
            for ?(i = 0 ;?i < r - 1 ;?i ++ )? {
            ????????memset(d[i
            + 1 ],? - 1 ,? sizeof (d[i + 1 ]));
            ????????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????????
            if ?(d[i][k]? != ? - 1 )? {
            ????????????????
            int ?t? = ?k,?j? = ? 0 ,?kk? = ? 0 ;
            ????????????????memset(b,?
            0 ,? sizeof (b));
            ????????????????memset(cc,?
            0 ,? sizeof (cc));
            ????????????????
            while ?(t? != ? 0 )? {
            ????????????????????b[j
            ++ ]? = ?t? % ? 2 ;
            ????????????????????t?
            /= ? 2 ;
            ????????????????}

            ????????????????ss?
            = ?d[i][k];
            ????????????????DFS(i
            + 1 ,? 0 ,? 0 );
            ????????????}

            ????????}

            ????}

            ????
            int ?ans? = ?INF;
            ????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????
            if ?(d[r - 1 ][k]? != ? - 1 ? && ?d[r - 1 ][k]? < ?ans)? {
            ????????????ans?
            = ?d[r - 1 ][k];
            ????????}

            ????}

            ????cout?
            << ?ans? << ?endl;
            }


            int ?main()
            {?
            ????cin?
            >> ?n;
            ????
            while ?(n -- ? != ? 0 )? {
            ????????cin?
            >> ?r? >> ?c;
            ????????
            for ?( int ?i = 0 ;?i < r;?i ++ )?cin? >> ?m[i];
            ????????Solve();
            ????}

            ????system(
            " pause " );
            ????
            return ? 0 ;
            }


            ghost_wei大牛的code,? 放出來供大家學習,? 用了滾動數組優化, 而且位運算用得出神入化:)
            #include<iostream.h>
            #include?
            <fstream.h>
            const?int?k2[11]={1,2,4,8,16,32,64,128,256,512,1024};
            int?n,m,c[2][1024];
            char?d[40][10];
            inline?
            void?min(int?&i,int?j)
            {
            ????
            if?(i>j)?i=j;
            }

            void?work()
            {
            ????
            int?i,j,km,k,e7,e8,l,t,ans;
            ????km
            =k2[m];
            ????
            for?(i=0;i<km;i++)?c[0][i]=100000;
            ????c[
            0][0]=0;
            ????e7
            =0;?e8=1;
            ????
            for?(i=0;i<n;i++)
            ????
            {
            ????????
            for?(j=0;j<km;j++)?c[e8][j]=100000;
            ????????
            for?(j=1;j<m;j++)
            ????????????
            if?(d[i][j]=='*')
            ????????????????
            for?(k=0;k<km;k++)
            ????????????????????min(c[e7][k
            |k2[j]|k2[j-1]],c[e7][k]+1);
            ????????
            for?(k=0;k<km;k++)
            ????????
            {
            ????????????l
            =0;?t=0;
            ????????????
            for?(j=0;j<m;j++)?
            ????????????????
            if?(!(k&k2[j])&&d[i][j]=='*')
            ????????????????
            {
            ????????????????????l
            +=k2[j];
            ????????????????????t
            ++;
            ????????????????}

            ????????????min(c[e8][l],c[e7][k]
            +t);
            ????????}

            ????????e7
            =e7^1;?e8=e8^1;
            ????}

            ????ans
            =100000;
            ????
            for?(k=0;k<km;k++)
            ????????min(ans,c[e7][k]);
            ????cout
            <<ans<<endl;
            }

            int?main()
            {
            ????
            int?tc,cas,i,j;
            ????cin
            >>tc;
            ????
            for?(cas=1;cas<=tc;cas++)
            ????
            {
            ????????cin
            >>n>>m;
            ????????
            for?(i=0;i<n;i++)
            ????????????
            for(j=0;j<m;j++)
            ????????????????cin
            >>d[i][j];
            ????????work();
            ????}

            ????
            return?0;
            }

            posted on 2006-10-18 17:29 閱讀(2124) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: 狀態壓縮DP, pku3020[未登錄] 2007-04-30 11:16 Leon
            Ghost的算法真是精辟,只是狀態數組定義的空間可能會不夠,代碼的line 30  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2007-06-30 10:35 姜雨生
            真是太好了
            以后多向你請教  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020[未登錄] 2008-07-02 08:22 菜鳥
            大牛解釋一下這一段吧:
            for (i=0;i<n;i++)
            {
            for (j=0;j<km;j++) c[e8][j]=100000;
            for (j=1;j<m;j++)
            if (d[i][j]=='*')
            for (k=0;k<km;k++)
            min(c[e7][k|k2[j]|k2[j-1]],c[e7][k]+1);
            for (k=0;k<km;k++)
            {
            l=0; t=0;
            for (j=0;j<m;j++)
            if (!(k&k2[j])&&d[i][j]=='*')
            {
            l+=k2[j];
            t++;
            }
            min(c[e8][l],c[e7][k]+t);
            }
            e7=e7^1; e8=e8^1;
            }
              回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2008-08-04 22:56 ecnu
            二分匹配做的。。關鍵是狀態壓縮不會。5555...  回復  更多評論
              
            A级毛片无码久久精品免费| 午夜精品久久久久久| 69SEX久久精品国产麻豆| 日本久久中文字幕| 无码精品久久久天天影视| 欧美久久亚洲精品| 狠狠色丁香久久婷婷综合五月 | 久久人人爽人人爽人人片AV东京热| 色综合久久综合中文综合网| 久久不射电影网| 国产精品永久久久久久久久久| 成人妇女免费播放久久久| 久久免费99精品国产自在现线 | 伊人久久综合无码成人网| 91精品国产高清久久久久久国产嫩草| 国产99精品久久| 香蕉久久夜色精品升级完成| 久久男人中文字幕资源站| 好久久免费视频高清| 精品多毛少妇人妻AV免费久久| 久久国产高清一区二区三区| 婷婷久久综合九色综合绿巨人 | 久久久精品国产| 一本色道久久99一综合| 日本精品一区二区久久久| 久久婷婷五月综合成人D啪| 亚洲天堂久久精品| 99热都是精品久久久久久| 91久久婷婷国产综合精品青草 | 久久强奷乱码老熟女网站| 国产亚洲欧美成人久久片 | 久久亚洲av无码精品浪潮| 观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 91精品久久久久久无码| 久久亚洲国产午夜精品理论片| 久久露脸国产精品| 日日狠狠久久偷偷色综合96蜜桃| 久久se这里只有精品| 一级女性全黄久久生活片免费| 久久精品国产亚洲av水果派| 久久久久亚洲精品天堂久久久久久|