• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年9月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            30123456

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218108
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            Antenna Placement
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:380 Accepted:125

            Description
            The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

            Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

            Input
            On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

            Output
            For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

            Sample Input

            2
            7 9
            ooo**oooo
            **oo*ooo*
            o*oo**o**
            ooooooooo
            *******oo
            o*o*oo*oo
            *******oo
            10 1
            *
            *
            *
            o
            *
            *
            *
            *
            *
            *
            

            Sample Output

            17
            5

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2001

            myCode:

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?INF? = ? 1 ? << ? 28 ;

            int ?n,?r,?c;
            int ?e[ 11 ]? = ? { 1 ,? 2 ,? 4 ,? 8 ,? 16 ,? 32 ,? 64 ,? 128 ,? 256 ,? 512 ,? 1024 } ;
            char ?m[ 50 ][ 20 ];
            int ?d[ 50 ][ 1024 ];
            int ?b[ 20 ];
            int ?cc[ 20 ];
            int ?ss;

            void ?Try( int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?i = 0 ;?i < c;?i ++ )? {
            ????????????k?
            += ?b[i]? * ?e[i];
            ????????}

            ????????
            if ?(d[ 0 ][k]? == ? - 1 ? || ?d[ 0 ][k]? > ?s)
            ????????????d[
            0 ][k]? = ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(m[ 0 ][x]? == ? ' o ' )? {
            ????????Try(x
            + 1 ,?s);
            ????}
            ? else ? if ?(m[ 0 ][x]? == ? ' * ' )? {
            ????????
            int ?t1? = ?b[x],?t2? = ?b[x + 1 ],?t3? = ?s;
            ????????b[x]?
            = ? 1 ;?b[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????Try(x
            + 2 ,?s);
            ????????b[x]?
            = ?t1;?b[x + 1 ]? = ?t2;?s? = ?t3;
            ????????
            if ?(r? != ? 1 ? || ?m[ 0 ][x]? == ? ' o ' )?Try(x + 1 ,?s);
            ????}
            ??
            }


            void ?DFS( int ?i,? int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?j = 0 ;?j < c;?j ++ )? {
            ????????????k?
            += ?cc[j]? * ?e[j];
            ????????}

            ????????
            if ?(d[i][k]? == ? - 1 ? || ?d[i][k]? > ?ss? + ?s)
            ????????????d[i][k]?
            = ?ss? + ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(b[x]? == ? 0 )? {
            ????????
            if ?(m[i - 1 ][x]? == ? ' * ' )? {
            ????????????cc[x]?
            = ? 1 ;?s? += ? 1 ;
            ????????????DFS(i,?x
            + 1 ,?s);
            ????????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}

            ????????}

            ????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}
            ??????
            ????}

            }


            void ?init()
            {
            ????memset(d[
            0 ],? - 1 ,? sizeof (d[ 0 ]));
            ????memset(b,?
            0 ,? sizeof (b));
            ????Try(
            0 ,? 0 );
            }


            void ?Solve()?
            {
            ????
            int ?i,?j,?k;
            ????init();
            ????
            for ?(i = 0 ;?i < r - 1 ;?i ++ )? {
            ????????memset(d[i
            + 1 ],? - 1 ,? sizeof (d[i + 1 ]));
            ????????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????????
            if ?(d[i][k]? != ? - 1 )? {
            ????????????????
            int ?t? = ?k,?j? = ? 0 ,?kk? = ? 0 ;
            ????????????????memset(b,?
            0 ,? sizeof (b));
            ????????????????memset(cc,?
            0 ,? sizeof (cc));
            ????????????????
            while ?(t? != ? 0 )? {
            ????????????????????b[j
            ++ ]? = ?t? % ? 2 ;
            ????????????????????t?
            /= ? 2 ;
            ????????????????}

            ????????????????ss?
            = ?d[i][k];
            ????????????????DFS(i
            + 1 ,? 0 ,? 0 );
            ????????????}

            ????????}

            ????}

            ????
            int ?ans? = ?INF;
            ????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????
            if ?(d[r - 1 ][k]? != ? - 1 ? && ?d[r - 1 ][k]? < ?ans)? {
            ????????????ans?
            = ?d[r - 1 ][k];
            ????????}

            ????}

            ????cout?
            << ?ans? << ?endl;
            }


            int ?main()
            {?
            ????cin?
            >> ?n;
            ????
            while ?(n -- ? != ? 0 )? {
            ????????cin?
            >> ?r? >> ?c;
            ????????
            for ?( int ?i = 0 ;?i < r;?i ++ )?cin? >> ?m[i];
            ????????Solve();
            ????}

            ????system(
            " pause " );
            ????
            return ? 0 ;
            }


            ghost_wei大牛的code,? 放出來供大家學習,? 用了滾動數組優化, 而且位運算用得出神入化:)
            #include<iostream.h>
            #include?
            <fstream.h>
            const?int?k2[11]={1,2,4,8,16,32,64,128,256,512,1024};
            int?n,m,c[2][1024];
            char?d[40][10];
            inline?
            void?min(int?&i,int?j)
            {
            ????
            if?(i>j)?i=j;
            }

            void?work()
            {
            ????
            int?i,j,km,k,e7,e8,l,t,ans;
            ????km
            =k2[m];
            ????
            for?(i=0;i<km;i++)?c[0][i]=100000;
            ????c[
            0][0]=0;
            ????e7
            =0;?e8=1;
            ????
            for?(i=0;i<n;i++)
            ????
            {
            ????????
            for?(j=0;j<km;j++)?c[e8][j]=100000;
            ????????
            for?(j=1;j<m;j++)
            ????????????
            if?(d[i][j]=='*')
            ????????????????
            for?(k=0;k<km;k++)
            ????????????????????min(c[e7][k
            |k2[j]|k2[j-1]],c[e7][k]+1);
            ????????
            for?(k=0;k<km;k++)
            ????????
            {
            ????????????l
            =0;?t=0;
            ????????????
            for?(j=0;j<m;j++)?
            ????????????????
            if?(!(k&k2[j])&&d[i][j]=='*')
            ????????????????
            {
            ????????????????????l
            +=k2[j];
            ????????????????????t
            ++;
            ????????????????}

            ????????????min(c[e8][l],c[e7][k]
            +t);
            ????????}

            ????????e7
            =e7^1;?e8=e8^1;
            ????}

            ????ans
            =100000;
            ????
            for?(k=0;k<km;k++)
            ????????min(ans,c[e7][k]);
            ????cout
            <<ans<<endl;
            }

            int?main()
            {
            ????
            int?tc,cas,i,j;
            ????cin
            >>tc;
            ????
            for?(cas=1;cas<=tc;cas++)
            ????
            {
            ????????cin
            >>n>>m;
            ????????
            for?(i=0;i<n;i++)
            ????????????
            for(j=0;j<m;j++)
            ????????????????cin
            >>d[i][j];
            ????????work();
            ????}

            ????
            return?0;
            }

            posted on 2006-10-18 17:29 閱讀(2137) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: 狀態壓縮DP, pku3020[未登錄] 2007-04-30 11:16 Leon
            Ghost的算法真是精辟,只是狀態數組定義的空間可能會不夠,代碼的line 30  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2007-06-30 10:35 姜雨生
            真是太好了
            以后多向你請教  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020[未登錄] 2008-07-02 08:22 菜鳥
            大牛解釋一下這一段吧:
            for (i=0;i<n;i++)
            {
            for (j=0;j<km;j++) c[e8][j]=100000;
            for (j=1;j<m;j++)
            if (d[i][j]=='*')
            for (k=0;k<km;k++)
            min(c[e7][k|k2[j]|k2[j-1]],c[e7][k]+1);
            for (k=0;k<km;k++)
            {
            l=0; t=0;
            for (j=0;j<m;j++)
            if (!(k&k2[j])&&d[i][j]=='*')
            {
            l+=k2[j];
            t++;
            }
            min(c[e8][l],c[e7][k]+t);
            }
            e7=e7^1; e8=e8^1;
            }
              回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2008-08-04 22:56 ecnu
            二分匹配做的。。關鍵是狀態壓縮不會。5555...  回復  更多評論
              
            久久精品国产亚洲AV蜜臀色欲 | 精品国产VA久久久久久久冰| 国产精品久久久久久久午夜片 | 亚洲国产欧洲综合997久久| 国产综合免费精品久久久| 久久99热狠狠色精品一区| 7777久久亚洲中文字幕| 精品久久久久香蕉网| 狠狠色丁香婷婷综合久久来| 国产2021久久精品| 色青青草原桃花久久综合| 麻豆av久久av盛宴av| 久久精品国产亚洲av水果派| 狠狠色丁香婷婷久久综合不卡| 九九久久精品国产| 伊人久久一区二区三区无码| 久久久久成人精品无码中文字幕| 久久久久中文字幕| 亚洲精品tv久久久久久久久久| 欧美牲交A欧牲交aⅴ久久| 99久久精品免费观看国产| 久久婷婷午色综合夜啪| 国产精品免费福利久久| 亚洲精品NV久久久久久久久久| 东京热TOKYO综合久久精品| 国产成人综合久久精品尤物| 国内精品人妻无码久久久影院导航 | 国产精品成人无码久久久久久| 久久天天躁狠狠躁夜夜avapp| 久久精品成人免费看| 中文字幕精品无码久久久久久3D日动漫| 午夜人妻久久久久久久久| 精品久久久久久99人妻| aaa级精品久久久国产片| 精品国产日韩久久亚洲| 国内精品伊人久久久久影院对白| 性做久久久久久久| 国产精品久久新婚兰兰| 久久久久97国产精华液好用吗| 99久久精品毛片免费播放| 亚洲AV日韩AV永久无码久久|