• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2008年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218002
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            開始時候粗心,狀態(tài)轉移時候k寫成k-1了,查了n久.

            The Mailboxes Manufacturers Problem
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:299 Accepted:227

            Description

            In the good old days when Swedish children were still allowed to blowup their fingers with fire-crackers, gangs of excited kids would plague certain smaller cities during Easter time, with only one thing in mind: To blow things up. Small boxes were easy to blow up, and thus mailboxes became a popular target. Now, a small mailbox manufacturer is interested in how many fire-crackers his new mailbox prototype can withstand without exploding and has hired you to help him. He will provide you with k (1 ≤ k ≤ 10) identical mailbox prototypes each fitting up to m (1 ≤ m ≤ 100) crackers. However, he is not sure of how many firecrackers he needs to provide you with in order for you to be able to solve his problem, so he asks you. You think for a while and then say, “Well,if I blow up a mailbox I can’t use it again, so if you would provide me with only k = 1 mailboxes, I would have to start testing with 1 cracker, then 2 crackers, and so on until it finally exploded. In the worst case, that is if it does not blow up even when filled with m crackers, I would need 1 + 2 + 3 + … + m = m × (m + 1) ? 2 crackers. If m = 100 that would mean more than 5000 fire-crackers!” “That’s too many,” he replies. “What if I give you more than k = 1 mailboxes? Can you find a strategy that requires less crackers?”

            Can you? And what is the minimum number of crackers that you should ask him to provide you with?

            You may assume the following:

            1. If a mailbox can withstand x fire-crackers, it can also withstand x ? 1 fire-crackers.
            2. Upon an explosion, a mailbox is either totally destroyed (blown up) or unharmed, which means that it can be reused in another test explosion.

            Note: If the mailbox can withstand a full load of m fire-crackers, then the manufacturer will of course be satisfied with that answer. But otherwise he is looking for the maximum number of crackers that his mailboxes can withstand.

            Input

            The input starts with a single integer N (1 ≤ N ≤ 10) indicating the number of test cases to follow. Each test case is described by a line containing two integers: k and m, separated by a single space.

            Output

            For each test case print one line with a single integer indicating the minimum number of fire-crackers that is needed, in the worst case, in order to figure out how many crackers the mailbox prototype can withstand.

            Sample Input

            4
            1 10
            1 100
            3 73
            5 100

            Sample Output

            55
            5050
            382
            495

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2002

            #include?<iostream>
            using?namespace?std;

            const?int?INF?=?1?<<?28;

            int?d[11][101][101];
            int?sum(int?i,?int?j)?{
            ????
            int?ret?=?0,?k;
            ????
            for?(k=i;?k<=j;?k++)?ret?+=?k;
            ????return?ret;
            }

            int?max(int?a,?int?b)?{
            ????return?a?
            >?b???a?:?b;
            }


            int?main()?{
            ????
            int?caseTime;?
            ????
            int?i,?j,?k,?t,?K,?M,?l;
            ????scanf(
            "%d",?&caseTime);
            ????
            ????
            while?(caseTime--)?{
            ????????scanf(
            "%d%d",?&K,?&M);
            ????????
            for?(i=1;?i<=M;?i++)?{
            ????????????
            for?(j=i;?j<=M;?j++)?{
            ????????????????d[
            1][i][j]?=?sum(i,?j);
            ????????????}
            ????????}
            ????????
            for?(k=2;?k<=K;?k++)?{
            ????????????
            for?(l=0;?l<M;?l++)?{
            ????????????????
            for?(i=1;?i+l<=M;?i++)?{
            ????????????????????j?
            =?i?+?l;
            ????????????????????
            if?(i?==?j)?{
            ????????????????????????d[k][i][j]?
            =?i;
            ????????????????????????continue;
            ????????????????????}
            ????????????????????d[k][i][j]?
            =?INF;
            ????????????????????
            for?(t=i;?t<=j;?t++)?{
            ????????????????????????
            int?tmp;
            ????????????????????????
            if?(t?==?i)?tmp?=?d[k][i+1][j];
            ????????????????????????
            else?if?(t?==?j)?tmp?=?d[k-1][i][j-1];
            ????????????????????????
            else?tmp?=?max(d[k-1][i][t-1],?d[k-1][t+1][j]);
            ????????????????????????tmp?
            =?max(d[k-1][i][t-1],?d[k][t+1][j]);
            ????????????????????????
            if?(d[k][i][j]?>?t?+?tmp)?d[k][i][j]?=?t?+?tmp;
            ????????????????????}
            ????????????????}
            ????????????}
            ????????}
            ????????printf(
            "%d\n",?d[K][1][M]);
            ????}

            ????return?
            0;
            }
            posted on 2007-03-26 00:41 閱讀(2213) 評論(2)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2904 3維dp 2007-03-27 16:31 litianze
            我是一個剛剛開始做acm題的菜鳥,望大哥幫幫忙,可以介紹一下解決的思想嗎?小弟先謝謝了!  回復  更多評論
              
            # re: pku2904 3維dp 2007-03-27 23:04 
            dp[k][i][j]表示k個郵筒時候放鞭炮數(shù)為i..j時候的最優(yōu)值

            轉移方程為
            dp[k][i][j] = min{t+max(d[k-1][i][t-1],d[k][t+1][j])};

            狀態(tài)轉移時候就是考慮選t個鞭炮放時候爆或不爆  回復  更多評論
              
            亚洲伊人久久大香线蕉综合图片| 国产精品久久久久a影院| 亚洲伊人久久大香线蕉综合图片| 热99RE久久精品这里都是精品免费 | 久久精品嫩草影院| 精品久久人人爽天天玩人人妻| 日本亚洲色大成网站WWW久久| 久久亚洲精品国产精品| 中文精品久久久久国产网址| 老男人久久青草av高清| 久久精品国产亚洲av影院| 天天综合久久一二三区| 久久久久人妻精品一区二区三区| 99久久国产综合精品五月天喷水| 久久综合久久综合亚洲| 亚洲精品tv久久久久| 精品久久久久久久久久久久久久久 | 久久久久亚洲精品日久生情| 久久国产精品99精品国产987| 日韩va亚洲va欧美va久久| 国产精品久久国产精品99盘| 久久这里只有精品18| 青青草原综合久久| 欧美激情精品久久久久| 中文字幕无码免费久久| 欧美精品丝袜久久久中文字幕| 国产福利电影一区二区三区久久久久成人精品综合 | 久久Av无码精品人妻系列| 久久久久久国产精品美女| 国产精品va久久久久久久| 久久国产劲爆AV内射—百度| 久久亚洲AV无码西西人体| 久久精品一区二区| 久久婷婷成人综合色综合| 欧美日韩精品久久免费| 2019久久久高清456| 久久精品免费全国观看国产| 久久九色综合九色99伊人| 国产精品美女久久久网AV| AAA级久久久精品无码区| 91久久国产视频|