• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            Gargoyle

            Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
            Total Submission(s): 139    Accepted Submission(s): 22


            Problem Description
            Gargoyles can trace their history back many thousands of years to ancient Egypt, Greece, and Rome. Terra cotta waterspouts were formed in the shapes of animals such as lions and birds to serve the physical function of running the
            rainwater away from the walls and foundations of buildings, and the spiritual function of protecting from evil forces.
            Have you ever dreamed of creating your own castle with a lot of beautiful gargoyles on the walls? To your knowledge,
            the speed of water coming out of each gargoyle should be identical, so an elaborately designed water system is required.
            The water system consists of a huge reservoir and several interconnecting water pipes. Pipes cannot save water, so the total incoming and outgoing speed of water should be equal at each connection.
            All the water from gargoyles flows into the reservoir, which is located at the bottom of the castle. Some pipes are connecting the reservoir, but water can only go from the reservoir to pipes, but never from pipes back to the reservoir. A micro-processor is installed inside each pipe, so the speed of water could easily be controlled. However, the microprocessors consume electricity. The exact cost in each pipe is proportional to the speed of water. If the cost constant in the i-th pipe is ci, the electricity cost in that pipe is civi, where vi is the speed of water in that pipe. Write a program to find the optimal configuration of the water system (i.e. the water speed in each pipe) of your dream castle, so that the total cost is minimized. It is always possible to build a water system.
             

            Input
            The input consists of several test cases. The first line of each case contains three integers n, m and k (1 ≤ n ≤ 25, 1 ≤ m ≤ 50, 1 ≤ k ≤ 1000), the number of gargoyles, the number of pipe connections and the number of pipes. The following k lines each contains five integers a, b, l, u, c (0 ≤ a, b ≤ n + m, 0 ≤ l ≤ u ≤ 100, 1 ≤ c ≤ 100), describing each pipe. a and b
            are the incoming and outgoing vertex number (reservoir is 0, gargoyles are numbered 1 to n, pipe connections are numbered n + 1 to n + m), lower-bound and upper-bound of water speed, and the cost constant. No pipe connects two identical vertices. For every pipe, the incoming vertex will never be a gargoyle, and the outgoing vertex will never be the reservoir. For every pair of vertices, there could be at most one pipe connecting them (if a pipe is going from a to b, no pipes can go from a to b, or from b to a). The last test case is followed by a single zero, which should not be processed.
             

            Output
            For each test case, print the case number and minimal cost to two decimal places.
             

            Sample Input
            3 1 4 0 4 8 15 5 4 1 2 5 2 4 2 1 6 1 4 3 3 7 2 0
             

            Sample Output
            Case 1: 60.00
             

            Source
             

            Recommend
            lcy
             




            06年亞洲區域賽西安賽區的一道網絡流,相當犀利......我WA很久很久才勉強過了.......

            一.總體分析
            本題給出了一個網絡流的模型。以積水池為源點,每個連接點和噴水口為結點,另外建立一個超級匯,每個噴水口向超級匯連一條邊。題目就是求一個有上下界的最小費用流,其中到匯點的每一條邊的流量必須相等(*)。
            很多文獻對有上下界的費用流進行了討論,本文不再贅述。本文主要討論解決如何解決(*)的要求。

            二.判斷可行流
            我們不妨設所有連接到匯點的邊的流量均為F,我們要做的第一步就是:判斷是否存在這樣一組可行流使得F = F0成立。
            我們不妨給每一條連接到匯點的邊建立上下界[0,F0]。我們給出以下引理:
            引理一:存在滿足使得F0的可行流,當且僅當該網絡的最大流為F0N。
            引理二:若最大流小于F0N,則不存在F >= F0的可行流;
            引理三:若不存在可行流,則不存在F <= F0的可行流;

            由引理二、三可知:
            引理四:
            存在可行流的F的定義域為一段連續的區間[low, top]。
            根據引理二、三和四,我們不難使用二分法找出這一段F的可行區間[low, top]。

            三.找出最小費用流
            記cost(F)表示在F成立的最小費用。我們猜測,cost(F)與F成正比!
            感覺上,F越大,流量越大,那么每條邊上消耗的費用也就越大,所以猜想應該成立。可惜的是,按照該想法提交是無法通過測試數據的。因為:

            大家不免疑問,單調函數不也是凸的么?
            注意到有上下界的最小費用由兩部分構成:附加網絡的最小費用及殘余網絡的最小費用。注意到前者是關于F不增的后者是關于F不減的,如果前者的遞減速度大于后者的遞增速度,那么cost(F)將成為下凸函數。

            四.算法流程

            由于最小費用流的時間復雜度不好分析,本文直接認為是O(kN2),其中k表示增廣次數,算法總的時間復雜度為O(kN2logC)。
            posted on 2011-10-15 22:16 LLawliet 閱讀(249) 評論(0)  編輯 收藏 引用 所屬分類: 網絡流
            国产精品久久久久久久人人看| 蜜臀av性久久久久蜜臀aⅴ| 99久久国产综合精品网成人影院| 潮喷大喷水系列无码久久精品| www.久久热| 国内精品伊人久久久久777| 久久国产精品国产自线拍免费| 精品久久国产一区二区三区香蕉 | 久久国产精品77777| 大美女久久久久久j久久| 中文字幕久久精品 | 欧美777精品久久久久网| 欧美熟妇另类久久久久久不卡| 亚洲国产精品久久久久网站| 无码人妻久久一区二区三区蜜桃| 国产V综合V亚洲欧美久久| 中文精品99久久国产| 精品久久综合1区2区3区激情| 国产偷久久久精品专区| 久久久精品波多野结衣| 久久99精品国产99久久| 丁香色欲久久久久久综合网| 日韩十八禁一区二区久久 | 岛国搬运www久久| 国产成人精品久久亚洲| …久久精品99久久香蕉国产| 久久国产亚洲精品| 久久综合给合综合久久| 99久久人人爽亚洲精品美女 | 日产精品99久久久久久| 无码人妻精品一区二区三区久久久| 久久电影网| 久久国产成人亚洲精品影院| 岛国搬运www久久| 久久久99精品成人片中文字幕 | 97久久国产亚洲精品超碰热| 国产精品久久国产精品99盘| 久久久青草青青亚洲国产免观| 俺来也俺去啦久久综合网| 97超级碰碰碰久久久久| 99久久成人国产精品免费|