在Pentium以上的CPU中,提供了一條機器指令RDTSC(Read Time Stamp Counter)來讀取這個時間戳的數(shù)字,并將其保存在EDX:EAX寄存器對中。由于EDX:EAX寄存器對恰好是Win32平臺下C++語言保存函數(shù)返回值的寄存器,所以我們可以把這條指令看成是一個普通的函數(shù)調(diào)用。vc2003像這樣:
inline unsigned __int64 GetTimeStampCount()
{
__asm RDTSC
}
對于vc6或者其他編譯器可能不行,因為RDTSC不被C++的內(nèi)嵌匯編器直接支持,所以我們要用_emit偽指令直接嵌入該指令的機器碼形式0X0F、0X31,如下:
inline unsigned __int64 GetTimeStampCount()
{
__asm _emit 0x0F
__asm _emit 0x31
}
對關(guān)注性能的程序開發(fā)人員而言,一個好的計時部件既是益友,也是良師。計時器既可以作為程序組件幫助程序員精確的控制程序進程,又是一件有力的調(diào)試武器,在有經(jīng)驗的程序員手里可以盡快的確定程序的性能瓶頸,或者對不同的算法作出有說服力的性能比較。
在Windows平臺下,常用的計時器有兩種,一種是timeGetTime多媒體計時器,它可以提供毫秒級的計時。但這個精度對很多應(yīng)用場合而言還是太粗糙了。另一種是QueryPerformanceCount計數(shù)器,隨系統(tǒng)的不同可以提供微秒級的計數(shù)。對于實時圖形處理、多媒體數(shù)據(jù)流處理、或者實時系統(tǒng)構(gòu)造的程序員,善用QueryPerformanceCount/QueryPerformanceFrequency是一項基本功。
本文要介紹的,是另一種直接利用Pentium CPU內(nèi)部時間戳進行計時的高精度計時手段。以下討論主要得益于《Windows圖形編程》一書,第 15頁-17頁,有興趣的讀者可以直接參考該書。關(guān)于RDTSC指令的詳細(xì)討論,可以參考Intel產(chǎn)品手冊。本文僅僅作拋磚之用。
在 Intel Pentium以上級別的CPU中,有一個稱為“時間戳(Time Stamp)”的部件,它以64位無符號整型數(shù)的格式,記錄了自CPU上電以來所經(jīng)過的時鐘周期數(shù)。由于目前的CPU主頻都非常高,因此這個部件可以達(dá)到納秒級的計時精度。這個精確性是上述兩種方法所無法比擬的。
在Pentium以上的CPU中,提供了一條機器指令RDTSC(Read Time Stamp Counter)來讀取這個時間戳的數(shù)字,并將其保存在EDX:EAX寄存器對中。由于EDX:EAX寄存器對恰好是Win32平臺下C++語言保存函數(shù)返回值的寄存器,所以我們可以把這條指令看成是一個普通的函數(shù)調(diào)用。像這樣:
inline unsigned __int64 GetCycleCount()
{
__asm RDTSC
}
但是不行,因為RDTSC不被C++的內(nèi)嵌匯編器直接支持,所以我們要用_emit偽指令直接嵌入該指令的機器碼形式0X0F、0X31,如下:
inline unsigned __int64 GetCycleCount()
{
__asm _emit 0x0F
__asm _emit 0x31
}
以后在需要計數(shù)器的場合,可以像使用普通的Win32 API一樣,調(diào)用兩次GetCycleCount函數(shù),比較兩個返回值的差,像這樣:
unsigned long t;
t = (unsigned long)GetCycleCount();
//Do Something time-intensive ...
t -= (unsigned long)GetCycleCount();
《Windows圖形編程》第15頁編寫了一個類,把這個計數(shù)器封裝起來。有興趣的讀者可以去參考那個類的代碼。作者為了更精確的定時,做了一點小小的改進,把執(zhí)行RDTSC指令的時間,通過連續(xù)兩次調(diào)用GetCycleCount函數(shù)計算出來并保存了起來,以后每次計時結(jié)束后,都從實際得到的計數(shù)中減掉這一小段時間,以得到更準(zhǔn)確的計時數(shù)字。但我個人覺得這一點點改進意義不大。在我的機器上實測,這條指令大概花掉了幾十到100多個周期,在 Celeron 800MHz的機器上,這不過是十分之一微秒的時間。對大多數(shù)應(yīng)用來說,這點時間完全可以忽略不計;而對那些確實要精確到納秒數(shù)量級的應(yīng)用來說,這個補償也過于粗糙了。
這個方法的優(yōu)點是:
1.高精度??梢灾苯舆_(dá)到納秒級的計時精度(在1GHz的CPU上每個時鐘周期就是一納秒),這是其他計時方法所難以企及的。
2. 成本低。timeGetTime 函數(shù)需要鏈接多媒體庫winmm.lib,QueryPerformance* 函數(shù)根據(jù)MSDN的說明,需要硬件的支持(雖然我還沒有見過不支持的機器)和KERNEL庫的支持,所以二者都只能在Windows平臺下使用(關(guān)于DOS平臺下的高精度計時問題,可以參考《圖形程序開發(fā)人員指南》,里面有關(guān)于控制定時器8253的詳細(xì)說明)。但RDTSC指令是一條CPU指令,凡是i386平臺下Pentium以上的機器均支持,甚至沒有平臺的限制(我相信i386版本UNIX和Linux下這個方法同樣適用,但沒有條件試驗),而且函數(shù)調(diào)用的開銷是最小的。
3. 具有和CPU主頻直接對應(yīng)的速率關(guān)系。一個計數(shù)相當(dāng)于1/(CPU主頻Hz數(shù))秒,這樣只要知道了CPU的主頻,可以直接計算出時間。這和 QueryPerformanceCount不同,后者需要通過QueryPerformanceFrequency獲取當(dāng)前計數(shù)器每秒的計數(shù)次數(shù)才能換算成時間。
這個方法的缺點是:
1.現(xiàn)有的C/C++編譯器多數(shù)不直接支持使用RDTSC指令,需要用直接嵌入機器碼的方式編程,比較麻煩。
2.數(shù)據(jù)抖動比較厲害。其實對任何計量手段而言,精度和穩(wěn)定性永遠(yuǎn)是一對矛盾。如果用低精度的timeGetTime來計時,基本上每次計時的結(jié)果都是相同的;而RDTSC指令每次結(jié)果都不一樣,經(jīng)常有幾百甚至上千的差距。這是這種方法高精度本身固有的矛盾。
關(guān)于這個方法計時的最大長度,我們可以簡單的用下列公式計算:
自CPU上電以來的秒數(shù) = RDTSC讀出的周期數(shù) / CPU主頻速率(Hz)
64位無符號整數(shù)所能表達(dá)的最大數(shù)字是1.8×10^19,在我的Celeron 800上可以計時大約700年(書中說可以在200MHz的Pentium上計時117年,這個數(shù)字不知道是怎么得出來的,與我的計算有出入)。無論如何,我們大可不必關(guān)心溢出的問題。
下面是幾個小例子,簡要比較了三種計時方法的用法與精度
//Timer1.cpp 使用了RDTSC指令的Timer類//KTimer類的定義可以參見《Windows圖形編程》P15
//編譯行:CL Timer1.cpp /link USER32.lib
#include <stdio.h>
#include "KTimer.h"
main()
{
unsigned t;
KTimer timer;
timer.Start();
Sleep(1000);
t = timer.Stop();
printf("Lasting Time: %d\n",t);
}
//Timer2.cpp 使用了timeGetTime函數(shù)
//需包含<mmsys.h>,但由于Windows頭文件錯綜復(fù)雜的關(guān)系
//簡單包含<windows.h>比較偷懶:)
//編譯行:CL timer2.cpp /link winmm.lib
#include <windows.h>
#include <stdio.h>
main()
{
DWORD t1, t2;
t1 = timeGetTime();
Sleep(1000);
t2 = timeGetTime();
printf("Begin Time: %u\n", t1);
printf("End Time: %u\n", t2);
printf("Lasting Time: %u\n",(t2-t1));
}
//Timer3.cpp 使用了QueryPerformanceCounter函數(shù)
//編譯行:CL timer3.cpp /link KERNEl32.lib
#include <windows.h>
#include <stdio.h>
main()
{
LARGE_INTEGER t1, t2, tc;
QueryPerformanceFrequency(&tc);
printf("Frequency: %u\n", tc.QuadPart);
QueryPerformanceCounter(&t1);
Sleep(1000);
QueryPerformanceCounter(&t2);
printf("Begin Time: %u\n", t1.QuadPart);
printf("End Time: %u\n", t2.QuadPart);
printf("Lasting Time: %u\n",( t2.QuadPart- t1.QuadPart));
}
////////////////////////////////////////////////
//以上三個示例程序都是測試1秒鐘休眠所耗費的時間
file://測/試環(huán)境:Celeron 800MHz / 256M SDRAM
// Windows 2000 Professional SP2
// Microsoft Visual C++ 6.0 SP5
////////////////////////////////////////////////
以下是Timer1的運行結(jié)果,使用的是高精度的RDTSC指令
Lasting Time: 804586872
以下是Timer2的運行結(jié)果,使用的是最粗糙的timeGetTime API
Begin Time: 20254254
End Time: 20255255
Lasting Time: 1001
以下是Timer3的運行結(jié)果,使用的是QueryPerformanceCount API
Frequency: 3579545
Begin Time: 3804729124
End Time: 3808298836
Lasting Time: 3569712
轉(zhuǎn)自:http://blog.csdn.net/bbs598598/article/details/7441687