四元數常常可以在3D的書上看到。
但我的那本3D圖形學書上,在沒講四元數是干什么的之前,就列了幾張紙的公式,
大概因為自己還在上高中,不知道的太多,看了半天沒看懂。。。
終于,在gameres上看到了某強人翻譯的一個“4元數寶典 ”(原文是日本人寫的。。。),感覺很好,分享下。
★旋轉篇:
我將說明使用了四元數(si?yuan?shu,?quaternion)的旋轉的操作步驟
(1)四元數的虛部,實部和寫法
所謂四元數,就是把4個實數組合起來的東西。
4個元素中,一個是實部,其余3個是虛部。
比如,叫做Q的四元數,實部t而虛部是x,y,z構成,則像下面這樣寫。
Q?=?(t;?x,?y,?z)?
又,使用向量?V=(x,y,z),
Q?=?(t;?V)??
也可以這么寫。
正規地用虛數單位i,j,k的寫法的話,
Q?=?t?+?xi?+?yj?+?zk?
也這樣寫,不過,我不大使用
(2)四元數之間的乘法
虛數單位之間的乘法?
ii?=?-1,?ij?=?-ji?=?k?(其他的組合也是循環地以下同文)?
有這么一種規則。(我總覺得,這就像是向量積(外積),對吧)?
用這個規則一點點地計算很麻煩,所以請用像下面這樣的公式計算。
A?=?(a;?U)?
B?=?(b;?V)?
AB?=?(ab?-?U·V;?aV?+?bU?+?U×V)
不過,“U·V”是內積,「U×V」是外積的意思。
注意:一般AB<>BA所以乘法的左右要注意!
(3)3次元的坐標的四元數表示
如要將某坐標(x,y,z)用四元數表示,
P?=?(0;?x,?y,?z)?
則要這么寫。
?
另外,即使實部是零以外的值,下文的結果也一樣。用零的話省事所以我推薦。
(4)旋轉的四元數表示
以原點為旋轉中心,旋轉的軸是(α,?β,?γ)
(但?α^2?+?β^2?+?γ^2?=?1),?
(右手系的坐標定義的話,望向向量(α,?β,?γ)的前進方向反時針地)?
轉θ角的旋轉,用四元數表示就是,
Q?=?(cos(θ/2);?α?sin(θ/2),?β?sin(θ/2),?γ?sin(θ/2))?
R?=?(cos(θ/2);?-α?sin(θ/2),?-β?sin(θ/2),?-γ?sin(θ/2))?
(另外R?叫?Q?的共軛四元數。)?
那么,如要實行旋轉,
則?R?P?Q?=?(0;?答案)?
請像這樣三明治式地計算。這個值的虛部就是旋轉之后的點的坐標值。
?(另外,實部應該為零。請驗算看看)?
例子代碼
///?Quaternion.cpp?
///?(C)?Toru?Nakata,?toru-nakata@aist.go.jp?
///?2004?Dec?29?
??
#include?<math.h>?
#include?<iostream.h>?
??
///?Define?Data?type?
typedef?struct?
{?
??????????????double?t;?//?real-component?
??????????????double?x;?//?x-component?
??????????????double?y;?//?y-component?
??????????????double?z;?//?z-component?
}?quaternion;?
??
//// Bill 注:Kakezan 在日語里是 “乘法”的意思
quaternion?Kakezan(quaternion?left,?quaternion?right)?
{?
??????????????quaternion?ans;?
??????????????double?d1,?d2,?d3,?d4;?
??
??????????????d1?=??left.t?*?right.t;?
??????????????d2?=?-left.x?*?right.x;?
??????????????d3?=?-left.y?*?right.y;?
??????????????d4?=?-left.z?*?right.z;?
??????????????ans.t?=?d1+?d2+?d3+?d4;?
??
??????????????d1?=??left.t?*?right.x;?
??????????????d2?=??right.t?*?left.x;?
??????????????d3?=??left.y?*?right.z;?
??????????????d4?=?-left.z?*?right.y;?
??????????????ans.x?=??d1+?d2+?d3+?d4;?
??
??????????????d1?=??left.t?*?right.y;?
??????????????d2?=??right.t?*?left.y;?
??????????????d3?=??left.z?*?right.x;?
??????????????d4?=?-left.x?*?right.z;?
??????????????ans.y?=??d1+?d2+?d3+?d4;?
??
??????????????d1?=??left.t?*?right.z;?
??????????????d2?=??right.t?*?left.z;?
??????????????d3?=??left.x?*?right.y;?
??????????????d4?=?-left.y?*?right.x;?
??????????????ans.z?=??d1+?d2+?d3+?d4;?
??????????????
??????????????return?ans;?
}?
??
////?Make?Rotational?quaternion?
quaternion?MakeRotationalQuaternion(double?radian,?double?AxisX,?double?AxisY,?double?AxisZ)?
{?
??????????????quaternion?ans;?
??????????????double?norm;?
??????????????double?ccc,?sss;?
??????????????
??????????????ans.t?=?ans.x?=?ans.y?=?ans.z?=?0.0;?
??
??????????????norm?=?AxisX?*??AxisX?+??AxisY?*??AxisY?+??AxisZ?*??AxisZ;?
??????????????if(norm?<=?0.0)?return?ans;?
??
??????????????norm?=?1.0?/?sqrt(norm);?
??????????????AxisX?*=?norm;?
??????????????AxisY?*=?norm;?
??????????????AxisZ?*=?norm;?
??
??????????????ccc?=?cos(0.5?*?radian);?
??????????????sss?=?sin(0.5?*?radian);?
??
??????????????ans.t?=?ccc;?
??????????????ans.x?=?sss?*?AxisX;?
??????????????ans.y?=?sss?*?AxisY;?
??????????????ans.z?=?sss?*?AxisZ;?
??
??????????????return?ans;?
}?
??
////?Put?XYZ?into??quaternion?
quaternion?PutXYZToQuaternion(double?PosX,?double?PosY,?double?PosZ)?
{?
??????????????quaternion?ans;?
??
??????????????ans.t?=?0.0;?
??????????????ans.x?=?PosX;?
??????????????ans.y?=?PosY;?
??????????????ans.z?=?PosZ;?
??
??????????????return?ans;?
}?
??
/////?main?
int?main()?
{?
??????????????double?px,?py,?pz;?
??????????????double?ax,?ay,?az,?th;?
??????????????quaternion?ppp,?qqq,?rrr;?
??
??????????????cout?<<?"Point?Position?(x,?y,?z)?"?<<?endl;?
??????????????cout?<<?"??x?=?";?
??????????????cin?>>?px;?
??????????????cout?<<?"??y?=?";?
??????????????cin?>>?py;?
??????????????cout?<<?"??z?=?";?
??????????????cin?>>?pz;?
??????????????ppp?=?PutXYZToQuaternion(px,?py,?pz);?
??
??????????????while(1)?{?
????????????????????????????cout?<<?"\nRotation?Degree???(Enter?0?to?Quit)?"?<<?endl;?
????????????????????????????cout?<<?"??angle?=?";?
????????????????????????????cin?>>?th;?
????????????????????????????if(th?==?0.0)?break;?
??
????????????????????????????cout?<<?"Rotation?Axis?Direction???(x,?y,?z)?"?<<?endl;?
????????????????????????????cout?<<?"??x?=?";?
????????????????????????????cin?>>?ax;?
????????????????????????????cout?<<?"??y?=?";?
????????????????????????????cin?>>?ay;?
????????????????????????????cout?<<?"??z?=?";?
????????????????????????????cin?>>?az;?
??
??
????????????????????????????th?*=?3.1415926535897932384626433832795?/?180.0;?///?Degree?->?radian;?
??
????????????????????????????qqq?=?MakeRotationalQuaternion(th,?ax,?ay,?az);?
????????????????????????????rrr?=?MakeRotationalQuaternion(-th,?ax,?ay,?az);?
??
????????????????????????????ppp?=?Kakezan(rrr,?ppp);?
????????????????????????????ppp?=?Kakezan(ppp,?qqq);?
??
????????????????????????????cout?<<?"\nAnser?X?=?"?<<?ppp.x?
??????????????????????????????????????????<<??"\n??????Y?=?"?<<?ppp.y?
??????????????????????????????????????????<<??"\n??????Z?=?"?<<?ppp.z?<<?endl;?
??
??????????????}?
??
??????????????return?0;?
}??
http://staff.aist.go.jp/toru-nakata/quaternion.html
http://bbs.gameres.com/showthread.asp?threadid=73511