• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 297,  comments - 15,  trackbacks - 0

            The DMA is another two chips on your motherboard (usually is an Intel 8237A-5 chips) that allow you (the programmer) to offload data transfers between I/O boards. DMA actually stands for 'Direct Memory Access'.

            DMA can work: memory->I/O, I/O->memory. The memory->memory transfer doesn't work. It doesn't matter because ISA DMA is slow as hell and thus is unusable. Futhermore, using DMA for zeroing out memory would massacre the contents of memory caches.

            What about caches and DMA? L1 and L2 caches work absolutely transparently. When DMA writes to memory, caches autmatically load or least invalidate the data that go into the memory. When DMA reads memory, caches supply the unwritten bytes so not old but new values are tranferred to the peripheral.

            There are signals DACK, DRQ, and TC. When a peripheral wants to move a byte or 2 bytes into memory (is dependent on whether 8 bit or 16 bit DMA channel is in use -- 0,1,2,3 are 8-bit, 5,6,7 are 16-bit), it issues DRQ. DMA controller chats with CPU and after some time DMA controller issues DACK. Seeing DACK, the peripheral puts it's byte on data bus, DMA controller takes it and puts it in memory. If it was the last byte/word to move, DMA controller sets up also TC during the DACK. When peripheral sees TC, it is possible it will not want any more movements,

            In the other direction, everything is the same, but first the byte/word is fetched from the memory and then DACK is generated and the peripheral takes the data.

            DMA controller has only 8-bit address counter inside. There is external ALS573 counter for each chip so it makes programmer see it as DMA controller had 16 bits of address counter per channel inside. There are more 8 bits of address per channel of so called page register in LS612 that unfortunately do not increment as those in ALS573. All these 24 bits can address 16777216 of distict addresses.

            Recapitulation: for each channel, independently, you see 16 bits of auto-incrementing counter, and 8 bits of page register which doesn't increment.

            The difference between 16-bit DMA channels and 8-bit DMA channels is that the address bits for 16-bit channels are wired one bit left to the address bus so every address is 2 times bigger. The lowest bit is 0. The highest bit of page register would fit into bit 24 which is not on ISA so that it is left unconnected. The bus control logic is wired for 16-bit channels in a manner every single DMA transfer, a 16-bit cycle is generated, so ISA device puts 16 bits onto the bus at the time. I don't know what happens if you use 16-bit DMA channel with XT peripheral. I guess it could work but only be slower.

            8-bit DMA: increments by 1, cycles inside 65536 bytes, addresses 16MB, moves 8 bits a time.

            16-bit DMA: increments by 2, goes only over even addresses, cycles inside 131072 bytes, addresses 16MB, moves 16 bits a time. Uses 16-bit ISA I/O cycle so it takes less ticks to make one move that the 8-bit DMA.

            An example of DMA usage would be the Sound Blaster's ability to play samples in the background. The CPU sets up the sound card and the DMA. When the DMA is told to 'go', it simply shovels the data from RAM to the card. Since this is done off-CPU, the CPU can do other things while the data is being transferred.

            Enough basics. Here's how you program the DMA chip.


            When you want to start a DMA transfer, you need to know several things:

            • Number of DMA channel you want to use
            • What page to use
            • The offset in the page
            • The length
            • How to tell you peripheral to ask for DMA

            • You cannot transfer more than 64K or 128K of data in one shot, and
            • You cannot cross a page boundary. If you cross it, the lower 16 or 17 bits of address will simply wrap and you only suddenly jump 65536 or 131072 bytes lower that where you expected. It will be absolutely OK and no screw up will be performed. If you will take it in account in your program you can use it.

            Restriction #1 is rather easy to get around. Simply transfer the first block, and when the transfer is done, send the next block.

            For those of you not familiar with pages, I'll try to explain.

            Picture the first 16MB region of memory in your system. It is divided into 256 pages of 64K or 128 pages of 128K. Every page starts at a multiple of 65536 or 131072. They are numbered from 0 to 255 or from 0 to 127.

            In plain English, the page is the highest 8 bits or 7 bits of the absolute 24 bit address of our memory location. The offset is the lower 16 or 17 bits of the absolute 24 bit address.

            Now that we know where our data is, we need to find the length.

            The DMA has a little quirk on length. The true length sent to the DMA is actually length + 1. So if you send a zero length to the DMA, it actually transfers one byte or word, whereas if you send 0xFFFF, it transfers 64K or 128K. I guess they made it this way because it would be pretty senseless to program the DMA to do nothing (a length of zero), and in doing it this way, it allowed a full 64K or 128K span of data to be transferred.

            Now that you know what to send to the DMA, how do you actually start it? This enters us into the different DMA channels.

            The following chart will describe each channel and it's corresponding port number:

            DMA ChannelPageAddressCount
            087h0h1h
            183h2h3h
            281h4h5h
            382h6h7h
            48FhC0hC2h
            58BhC4hC6h
            689hC8hCAh
            78AhCChCEh

            DMA 4. Doesn't exist. DMA 4 is used to cascade the two 8237A chips. When first 8237A wants to DMA, it issues "HRQ" to second chip's DRQ 4. The second chip thinks DMA 4 is wanna be made so issues DRQ 4 to the first chip's HLDA. First chip makes it's own DMA 0-3, then sends to the second "OK second chip, my DMA 4 is complete" and second chip knows it's free on the bus. If this mechanism would not work, the two chips could peck each other on the BUS and the PC would screw up. :+)

            from:
            posted on 2010-11-14 19:23 chatler 閱讀(691) 評論(0)  編輯 收藏 引用 所屬分類: OS
            <2010年3月>
            28123456
            78910111213
            14151617181920
            21222324252627
            28293031123
            45678910

            常用鏈接

            留言簿(10)

            隨筆分類(307)

            隨筆檔案(297)

            algorithm

            Books_Free_Online

            C++

            database

            Linux

            Linux shell

            linux socket

            misce

            • cloudward
            • 感覺這個博客還是不錯,雖然做的東西和我不大相關,覺得看看還是有好處的

            network

            OSS

            • Google Android
            • Android is a software stack for mobile devices that includes an operating system, middleware and key applications. This early look at the Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.
            • os161 file list

            overall

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲伊人久久大香线蕉苏妲己| 99久久精品国产麻豆| 日本五月天婷久久网站| 无码AV波多野结衣久久| 91久久精品国产免费直播| 伊人久久国产免费观看视频 | 99久久国产综合精品五月天喷水| 久久久久久国产a免费观看不卡 | 久久精品国产精品国产精品污| 精品人妻伦一二三区久久| 麻豆精品久久久久久久99蜜桃| 久久午夜电影网| 色偷偷偷久久伊人大杳蕉| 久久久久这里只有精品| 久久国产色AV免费看| 久久综合亚洲色HEZYO社区| 亚洲国产精品久久久久网站 | 性做久久久久久久| 日本精品久久久久久久久免费| 99国产精品久久| 久久久精品2019免费观看| 久久婷婷是五月综合色狠狠| 99久久国产主播综合精品| 国产精品久久影院| 国产V综合V亚洲欧美久久| 久久精品国产2020| 中文字幕久久亚洲一区| 国产精品va久久久久久久| 久久超碰97人人做人人爱| 久久夜色精品国产欧美乱| 97精品国产97久久久久久免费| 一本久久免费视频| 精品久久久无码21p发布| 久久久久人妻一区精品果冻| 久久99精品久久久久久秒播 | 狠狠色丁香婷婷综合久久来来去| 91精品国产高清久久久久久io| 久久99精品久久久久久久不卡| 久久精品国产精品青草| 久久综合综合久久97色| 国产2021久久精品|