青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2053) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美高清在线观看| 蜜臀av性久久久久蜜臀aⅴ| 亚洲激情网站| 麻豆成人在线播放| 日韩视频第一页| 日韩视频亚洲视频| 国产精品久久久久77777| 欧美在线观看网站| 久久精品视频在线看| 在线观看欧美一区| 亚洲欧洲日产国产综合网| 欧美色精品在线视频| 欧美一级在线视频| 久久精品人人做人人爽电影蜜月| 在线观看欧美黄色| 91久久精品一区| 国产精品日韩一区二区| 久久亚洲不卡| 欧美极品一区| 久久国产乱子精品免费女| 久久久午夜精品| 亚洲少妇诱惑| 欧美在线视频导航| 99精品国产在热久久下载| 正在播放亚洲一区| 在线观看欧美亚洲| 亚洲视频网在线直播| 影音先锋一区| 亚洲视频精选| 亚洲欧洲在线看| 先锋影音久久| 一本到高清视频免费精品| 欧美一区免费视频| 中文一区二区在线观看| 久久久免费精品视频| 一区二区三区波多野结衣在线观看| 亚洲欧美日韩国产综合精品二区| 亚洲三级性片| 欧美在线影院| 亚洲欧美另类在线| 欧美片网站免费| 蜜臀99久久精品久久久久久软件 | 久久裸体艺术| 欧美日韩久久| 欧美激情精品久久久久久久变态 | 麻豆9191精品国产| 久久国产精品网站| 欧美视频在线视频| 亚洲国产精品第一区二区三区| 国产欧美日韩免费| 一本一本久久a久久精品综合麻豆| 亚洲国产精品一区二区三区| 午夜精品成人在线| 欧美一级日韩一级| 欧美午夜精品理论片a级按摩| 欧美国产欧美亚洲国产日韩mv天天看完整 | 亚洲一区二区三区在线看| 亚洲精选一区二区| 久久―日本道色综合久久| 久久精品成人欧美大片古装| 国产精品国色综合久久| 亚洲人线精品午夜| 夜夜精品视频| 欧美日韩大片一区二区三区| 亚洲国产精品国自产拍av秋霞| 在线国产精品一区| 久久久噜噜噜| 亚洲电影第1页| 亚洲激情成人| 欧美激情偷拍| 99在线精品观看| 亚洲综合国产| 国产日韩专区| 久久婷婷影院| 亚洲国产天堂久久综合网| 亚洲欧洲另类| 欧美日精品一区视频| 亚洲天堂免费观看| 性欧美超级视频| 国内精品美女在线观看| 久久久久国产精品午夜一区| 欧美电影电视剧在线观看| 91久久久久| 国产精品久久久久aaaa九色| 欧美亚洲视频| 欧美国产在线观看| 一区二区三区四区五区在线| 国产精品久久久久久久7电影| 午夜影院日韩| 欧美韩国日本综合| 亚洲一二三区精品| 国外精品视频| 欧美激情一区二区三区在线视频观看 | 久久尤物电影视频在线观看| 亚洲国产精品va在线观看黑人| 欧美大尺度在线| 中文在线资源观看视频网站免费不卡| 欧美亚洲三区| 亚洲人成在线观看| 国产精品综合视频| 欧美国产日本| 欧美亚洲一区二区三区| 亚洲国产欧美久久| 久久不射网站| 99视频超级精品| 国产专区欧美精品| 欧美日韩在线直播| 久久久久久九九九九| 99在线视频精品| 美女视频黄 久久| 亚洲欧美日韩中文视频| 亚洲国产欧美一区二区三区久久| 欧美日在线观看| 免费不卡亚洲欧美| 欧美一区二区成人| 夜夜嗨av一区二区三区网站四季av | 性亚洲最疯狂xxxx高清| 亚洲人成人77777线观看| 国产欧美三级| 国产精品av一区二区| 免费久久99精品国产自| 欧美一区二区成人6969| 一区二区三区精品视频在线观看| 欧美刺激性大交免费视频| 久久久国产精品一区二区中文| 亚洲午夜91| 99国产精品久久久久久久成人热| 国产一区二区在线免费观看| 欧美日韩在线视频一区二区| 蜜桃伊人久久| 美女图片一区二区| 久久久999| 久久久久一区二区三区| 久久成人人人人精品欧| 亚洲一区免费| 亚洲一区二区精品视频| 一区二区av| av成人黄色| 一区二区精品国产| 一本大道久久a久久综合婷婷 | 欧美高清视频在线| 欧美成人午夜| 欧美国产免费| 欧美激情中文不卡| 欧美激情第9页| 欧美成人午夜| 最新国产乱人伦偷精品免费网站| 欧美激情一区在线观看| 亚洲大片av| 最新精品在线| 在线综合亚洲欧美在线视频| 99国产精品久久久久久久成人热| 日韩午夜中文字幕| 亚洲婷婷在线| 午夜亚洲一区| 久久一区二区三区av| 免费不卡亚洲欧美| 欧美日韩久久不卡| 国产精品综合视频| 黄色一区二区三区四区| 在线不卡免费欧美| 91久久精品国产91性色| av成人福利| 欧美一区91| 免费观看在线综合| 日韩网站免费观看| 午夜久久电影网| 久热精品在线| 欧美性猛交xxxx乱大交退制版| 国产精品亚洲第一区在线暖暖韩国| 国产日韩精品视频一区二区三区 | 欧美激情小视频| 国产精品日韩欧美一区| 黄色亚洲大片免费在线观看| 亚洲精品一区二区三| 先锋亚洲精品| 欧美黄污视频| 亚洲深夜福利在线| 久久夜色精品国产| 国产精品久久久对白| 在线欧美福利| 午夜日韩在线观看| 欧美激情91| 午夜精品电影| 欧美久久精品午夜青青大伊人| 国产毛片精品视频| 亚洲精品影院在线观看| 欧美一区视频| 亚洲精品免费在线观看| 久久成人免费网| 国产精品夫妻自拍| 亚洲精品在线观看免费| 久久精品国产欧美激情| 亚洲精品在线视频| 久久综合久久综合这里只有精品| 国产精品久久久一区麻豆最新章节 | 国产精品自在线| 夜夜夜精品看看| 欧美激情四色| 久久久久久亚洲精品杨幂换脸 |