青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2103) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久久国产精品一区| 欧美亚洲日本一区| 欧美色视频一区| 欧美成人免费在线视频| 欧美18av| 欧美日韩亚洲另类| 国产精品ⅴa在线观看h| 国产欧美在线| 亚洲高清视频一区| 91久久精品国产91性色| 亚洲美女视频在线免费观看| 最新中文字幕一区二区三区| 日韩一区二区免费高清| 亚洲在线一区二区三区| 久久av资源网| 最新亚洲激情| 一级成人国产| 久久精品在线免费观看| 欧美成人按摩| 国产日韩精品一区二区三区| 激情欧美国产欧美| 在线一区视频| 麻豆精品精华液| 99精品国产在热久久下载| 亚洲欧美中文日韩在线| 美女网站在线免费欧美精品| 国产精品99一区二区| 亚洲国产成人精品女人久久久| 亚洲香蕉网站| 欧美国产视频在线观看| 校园激情久久| 欧美视频1区| 亚洲精选视频免费看| 久久国产精品一区二区| 亚洲美女视频在线观看| 久久婷婷亚洲| 国产视频精品免费播放| 一区二区高清在线| 欧美高清日韩| 久久精品亚洲国产奇米99| 欧美激情视频免费观看| 亚洲女人天堂av| 欧美激情第五页| 一区在线影院| 欧美一区二区视频在线| 日韩午夜三级在线| 免费成人av在线| 国语精品一区| 欧美一区二区三区在线观看视频 | 国内精品久久久久影院色 | 亚洲黄色免费| 久久亚洲一区二区| 午夜视频久久久久久| 欧美日韩国产区一| 99精品99| 99精品视频一区| 欧美伦理91i| 一区二区不卡在线视频 午夜欧美不卡'| 美女脱光内衣内裤视频久久网站| 亚洲欧美日韩成人高清在线一区| 欧美视频二区| 欧美一级免费视频| 亚洲免费婷婷| 国产专区欧美精品| 麻豆久久婷婷| 免播放器亚洲一区| 亚洲精品日韩在线观看| 91久久国产综合久久| 欧美91精品| 一区二区三欧美| 亚洲一二三四区| 国产日韩精品久久| 久久网站热最新地址| 久久免费一区| 亚洲人成人一区二区三区| 亚洲人成网站在线播| 欧美日韩国产123| 欧美一区=区| 久久一区二区视频| 亚洲免费av电影| 在线亚洲一区二区| 国内伊人久久久久久网站视频| 另类激情亚洲| 欧美日本高清一区| 欧美在线观看网址综合| 久久人人超碰| 一区二区三区日韩精品视频| 亚洲视频精选在线| 狠狠久久综合婷婷不卡| 亚洲高清不卡在线| 国产精品99免费看| 久久影院亚洲| 欧美日韩国产专区| 欧美精品999| 蜜桃av一区| 在线观看欧美日韩| 免费在线欧美视频| 在线日韩av| 欧美视频在线免费| 午夜在线电影亚洲一区| 欧美一区二区精品在线| 亚洲国产精品成人va在线观看| 欧美国产日本在线| 国产精品久久久久婷婷| 欧美va日韩va| 国产精品毛片一区二区三区| 老牛嫩草一区二区三区日本| 欧美日韩精品免费观看视频| 久久精品91| 欧美性色综合| 亚洲电影有码| 久久久噜噜噜久噜久久| 亚洲一区二区三区高清 | 9色国产精品| 国内精品写真在线观看| 性久久久久久| 欧美丰满高潮xxxx喷水动漫| 国产精品久久久久久久久借妻 | 欧美日韩极品在线观看一区| 久久久久久久久久久久久久一区| 欧美日韩一区三区| 亚洲第一在线| 1204国产成人精品视频| 欧美一级久久久| 羞羞色国产精品| 国产精品v欧美精品v日韩| 亚洲国产精品毛片| 在线播放日韩| 久久精品一区二区国产| 久久国产精品久久久久久久久久| 国产精品久久久久久模特| 亚洲黄色成人| 日韩午夜免费| 欧美激情亚洲精品| 亚洲国产小视频| 亚洲三级国产| 欧美精品久久一区二区| 亚洲国产日韩欧美综合久久| 最新成人av网站| 欧美激情一区二区久久久| 亚洲国产精品一区二区www在线| 亚洲国产精品精华液网站| 狼人天天伊人久久| 欧美激情影音先锋| 亚洲国语精品自产拍在线观看| 久久久久综合网| 欧美不卡一区| 日韩一级视频免费观看在线| 欧美精品一区在线发布| 亚洲精品一级| 亚洲一区三区视频在线观看| 国产精品啊啊啊| 亚洲欧美在线一区| 免费成人av| 亚洲日本免费电影| 久久久久国产免费免费| 欧美1区视频| 乱码第一页成人| 亚洲国产片色| 美脚丝袜一区二区三区在线观看| 毛片一区二区| 亚洲精品综合精品自拍| 欧美日韩国产在线看| 国产精品99久久久久久宅男 | 欧美一区二区三区日韩视频| 国产模特精品视频久久久久| 久久精品国亚洲| 最新国产成人av网站网址麻豆| 日韩一区二区高清| 国产精品伦一区| 久久免费精品视频| 一区二区高清| 老司机午夜精品视频| 9色精品在线| 国产日韩精品一区| 欧美人与性禽动交情品 | 亚洲精品久久久久久一区二区| 欧美精品一二三| 亚洲欧美中文在线视频| 亚洲黄页一区| 久久精品99国产精品日本| 亚洲欧洲另类| 国产日韩视频| 欧美午夜免费电影| 免费短视频成人日韩| 亚洲自拍偷拍福利| 亚洲经典视频在线观看| 久久久7777| 亚洲资源在线观看| 91久久精品国产91性色| 国产亚洲欧美激情| 欧美调教vk| 欧美大片免费久久精品三p | 亚洲一区激情| 在线精品国产成人综合| 国产精品爱久久久久久久| 欧美大片免费久久精品三p| 久久九九热re6这里有精品| 亚洲一区国产精品| 99国产成+人+综合+亚洲欧美|