青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2104) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            一区二区三区鲁丝不卡| 国产欧美日韩综合| 亚洲精品人人| 亚洲精品影院| 久久野战av| 女人香蕉久久**毛片精品| 久久精品视频在线观看| 欧美成人国产一区二区| 欧美日韩一区二区国产| 国产精品一区二区视频| 国产一区二区三区精品久久久| 韩曰欧美视频免费观看| 亚洲级视频在线观看免费1级| 日韩一二三区视频| 亚洲欧美日韩视频二区| 久久日韩粉嫩一区二区三区| 亚洲国产欧美一区二区三区久久 | 久久视频在线视频| 国产日韩欧美一二三区| 亚洲国内高清视频| 美国成人直播| 久久综合色8888| 欧美一区二区三区久久精品| 久热这里只精品99re8久| 欧美日韩精品在线播放| 极品日韩久久| 一区二区三区日韩欧美精品| 久久久久成人精品| 亚洲理伦在线| 欧美色道久久88综合亚洲精品| 国产主播精品| 亚洲午夜av电影| 老司机午夜精品视频| 欧美中日韩免费视频| 国产精品成人午夜| 亚洲国产经典视频| 久久国产直播| 一区二区日本视频| 国产精品乱码一区二区三区| 亚洲人成网站影音先锋播放| 久久免费99精品久久久久久| 久久久久久高潮国产精品视| 国产精品社区| 亚洲美女精品成人在线视频| 欧美成人午夜剧场免费观看| 亚洲欧美日韩在线| 欧美日韩一区二区在线观看视频| 亚洲欧美日韩国产成人精品影院| 午夜精品久久久| 亚洲国产欧美一区| 一区二区欧美视频| 亚洲第一页在线| 免费在线看成人av| 午夜精品一区二区三区在线| 欧美日韩综合久久| 久久精品视频免费| 欧美激情一区二区在线 | 香蕉av777xxx色综合一区| 亚洲精品欧美极品| 国产日韩在线视频| 亚洲日本va午夜在线影院| 欧美风情在线观看| 亚洲福利国产精品| 亚洲深夜福利| 欧美午夜精品理论片a级按摩| 洋洋av久久久久久久一区| 亚洲欧洲偷拍精品| 欧美日韩视频免费播放| 久久久久**毛片大全| 欧美日韩美女一区二区| 蜜臀av性久久久久蜜臀aⅴ| 国产精品大全| 日韩视频久久| 国产免费观看久久黄| 亚洲国产精品电影在线观看| 国内久久婷婷综合| 亚洲欧美日本日韩| 亚洲欧美成人在线| 欧美日韩伦理在线| 亚洲三级观看| 亚洲精品国产精品乱码不99按摩| 亚洲精品三级| 亚洲国产午夜| 久久视频在线免费观看| 久久精品国产免费观看| 欧美午夜电影完整版| 亚洲精品久久久蜜桃| 亚洲国产日韩欧美在线99| 久久久久91| 久久全球大尺度高清视频| 国产麻豆一精品一av一免费| 国产精品99久久不卡二区| 一区二区三区欧美成人| 欧美日韩高清区| 亚洲精品美女在线观看播放| 亚洲免费黄色| 欧美日韩黄视频| 亚洲精品影院在线观看| 中日韩在线视频| 久久久青草青青国产亚洲免观| 久久九九热re6这里有精品| 国产精品欧美在线| 亚洲欧美成人网| 亚洲欧洲综合另类在线| 麻豆精品网站| 欧美一区二区三区播放老司机| 麻豆久久精品| 亚洲国产成人午夜在线一区| 国产伦精品一区二区三区四区免费| 在线视频欧美日韩精品| 性久久久久久| 狠狠综合久久av一区二区小说| 久久久久久欧美| 亚洲第一精品久久忘忧草社区| 亚洲日本中文字幕| 欧美日韩中文字幕在线视频| 亚洲一区二区av电影| 99国产精品一区| 欧美日本视频在线| 亚洲成人中文| 国产自产在线视频一区| 久久精品视频导航| 亚洲国产精品成人| 亚洲免费中文| 一区二区三区在线不卡| 欧美激情在线观看| 亚洲免费网站| 欧美大片在线观看| 亚洲一区欧美二区| 欧美视频不卡中文| 午夜欧美大片免费观看| 麻豆精品视频| 国产精品99久久久久久www| 国产精品欧美久久| 久久久久91| 99视频+国产日韩欧美| 亚洲美女黄色| 国产日产亚洲精品系列| 欧美成人精品在线播放| 亚洲与欧洲av电影| 亚洲国产一区二区三区高清| 午夜久久资源| 国产午夜精品久久久久久免费视| 久久久久久国产精品mv| 一个色综合导航| 欧美成人一区二区三区片免费| 亚洲制服丝袜在线| 亚洲欧洲一级| 国产在线精品二区| 国产精品免费一区二区三区在线观看| 久久网站免费| 亚洲免费在线播放| 亚洲免费电影在线| 欧美成人小视频| 久久久久网址| 欧美一站二站| 亚洲欧美日韩国产成人| 一区二区三区视频在线| 亚洲精品日韩综合观看成人91| 国一区二区在线观看| 国产精品日韩欧美一区二区| 欧美日韩精品二区第二页| 老牛影视一区二区三区| 欧美在线视频免费| 亚洲手机成人高清视频| 日韩视频精品在线| 亚洲国产欧美另类丝袜| 黄色一区二区在线观看| 国产亚洲欧美aaaa| 国产麻豆精品视频| 国产精品香蕉在线观看| 国产精品国产三级国产专播精品人| 欧美精品成人一区二区在线观看 | 欧美日韩人人澡狠狠躁视频| 欧美jjzz| 免费一区二区三区| 免费在线成人av| 美国成人直播| 欧美18av| 欧美成人蜜桃| 欧美精品一区二区精品网| 欧美激情精品| 欧美日韩美女在线观看| 欧美午夜欧美| 国产精品久久网| 国产丝袜一区二区| 国产曰批免费观看久久久| 国产亚洲精品久久飘花| 韩日在线一区| 91久久一区二区| 亚洲社区在线观看| 欧美一区二区三区在| 久久久欧美精品sm网站| 欧美岛国激情| 9久草视频在线视频精品| 亚洲综合视频一区| 久久精品国产精品亚洲综合| 亚洲视频电影在线| 亚洲欧美激情视频在线观看一区二区三区| 亚洲一区二区三区四区五区午夜|