青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2104) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            99视频在线观看一区三区| 亚洲欧美日本国产有色| 免费成人av在线| 亚洲国产欧美精品| 亚洲国产欧美一区二区三区久久| 久久婷婷国产麻豆91天堂| 狠狠干综合网| 亚洲高清资源| 欧美日韩亚洲一区二| 亚洲自拍偷拍视频| 欧美一区二区三区免费在线看| 国产欧美一区二区视频| 美女视频网站黄色亚洲| 免费在线观看精品| 一区二区成人精品| 午夜精品久久久久久久男人的天堂| 国产精品一区二区三区免费观看| 久久成人人人人精品欧| 久久网站热最新地址| 最近中文字幕mv在线一区二区三区四区 | 亚洲激精日韩激精欧美精品| 欧美精品v日韩精品v国产精品| 99精品欧美一区| 亚洲桃色在线一区| 极品少妇一区二区三区精品视频| 欧美激情一区二区三区在线| 欧美了一区在线观看| 亚洲一区精彩视频| 久久野战av| 亚洲在线一区二区三区| 久久综合伊人77777蜜臀| 亚洲小说欧美另类社区| 久久久蜜桃一区二区人| 在线亚洲美日韩| 久久久亚洲欧洲日产国码αv| 中国av一区| 久久在线视频在线| 性亚洲最疯狂xxxx高清| 欧美激情一区| 久色成人在线| 国产精品久久久久久久免费软件| 欧美国产乱视频| 欧美大香线蕉线伊人久久国产精品| 午夜精品福利在线| 欧美精品久久久久久久| 欧美v日韩v国产v| 国产日本欧美一区二区三区| 亚洲看片网站| 亚洲国产日韩一区| 午夜精品久久久99热福利| 在线视频一区二区| 欧美国产日韩一区| 欧美大片va欧美在线播放| 狠狠色狠狠色综合| 亚洲欧美另类久久久精品2019| 99综合电影在线视频| 麻豆精品精品国产自在97香蕉| 久久久www免费人成黑人精品| 国产精品午夜电影| 中日韩午夜理伦电影免费| 中文国产亚洲喷潮| 欧美激情视频在线播放| 亚洲国产一区二区三区在线播| 一区二区三区在线观看国产| 欧美一区日韩一区| 久久九九热re6这里有精品| 国产精品视频观看| 亚洲与欧洲av电影| 欧美在线视频导航| 国产欧美日韩专区发布| 欧美亚洲一区二区在线观看| 久久精品国产77777蜜臀 | 午夜亚洲精品| 久久激情五月激情| 国产欧美精品在线| 久久精品导航| 亚洲第一精品影视| 亚洲国内自拍| 欧美精品在线看| 一区二区三区 在线观看视| 亚洲午夜激情免费视频| 欧美体内谢she精2性欧美| 亚洲一区二区三区国产| 欧美中文字幕精品| 伊人成人网在线看| 欧美不卡视频一区发布| 最新成人av在线| 亚洲欧美日韩精品久久久| 国产精品一区二区久久精品| 欧美中文字幕第一页| 欧美成人免费观看| 一区二区高清视频| 国产视频欧美视频| 免费不卡亚洲欧美| 国产精品99久久不卡二区| 久久精品视频免费播放| 亚洲高清视频一区二区| 欧美日韩免费高清| 欧美一区二区三区四区在线观看地址 | 久久国产视频网| 亚洲精华国产欧美| 国产精品一区二区女厕厕| 久久久欧美一区二区| 99re6这里只有精品| 久久国产精品一区二区三区四区 | 国内精品久久久久影院色| 欧美大尺度在线| 亚洲欧美日韩精品久久亚洲区| 免费日韩av| 午夜久久影院| 99在线精品视频在线观看| 国产日韩欧美一区二区| 欧美激情一区二区久久久| 欧美在线一二三区| 一二三区精品| 欧美+亚洲+精品+三区| 午夜在线一区二区| 亚洲裸体俱乐部裸体舞表演av| 国产精品自拍在线| 欧美日韩性生活视频| 久久综合久久久| 欧美在线观看你懂的| 日韩亚洲一区在线播放| 欧美二区在线| 美女91精品| 欧美一区二区三区日韩| 一区二区三区四区五区精品视频| 伊人婷婷欧美激情| 国产日韩欧美日韩| 国产精品男女猛烈高潮激情| 欧美高清在线观看| 麻豆成人精品| 老司机一区二区三区| 久久精品一区四区| 欧美中文字幕在线| 欧美在线首页| 欧美中文字幕在线播放| 午夜宅男欧美| 亚洲综合大片69999| 亚洲天堂第二页| 一区二区三区视频免费在线观看| 欧美高清日韩| 亚洲大片一区二区三区| 免费成人在线观看视频| 久热re这里精品视频在线6| 欧美一区国产二区| 欧美在线视频免费观看| 欧美在线视频观看| 久久久久国产一区二区| 久久精品亚洲热| 久久久久久自在自线| 久久精品最新地址| 免费人成精品欧美精品| 亚洲成色精品| 亚洲三级视频| 一区二区三区.www| 亚洲欧美日产图| 久久久www成人免费毛片麻豆| 久久国产精品99国产精| 久久影院午夜片一区| 农村妇女精品| 欧美四级在线观看| 国产亚洲va综合人人澡精品| 国产午夜精品在线观看| 在线欧美日韩| 一区二区冒白浆视频| 香蕉久久国产| 另类av一区二区| 亚洲精品影院| 欧美亚洲免费电影| 欧美+亚洲+精品+三区| 欧美日韩国产综合久久| 国产日韩av在线播放| 亚洲大片精品永久免费| 一区二区三区产品免费精品久久75 | 欧美精品粉嫩高潮一区二区 | 国产欧美在线视频| 在线视频国产日韩| 一区二区三区精品视频| 久久久99爱| 亚洲精品自在久久| 欧美在线播放视频| 欧美激情欧美狂野欧美精品| 国产精品久久毛片a| 亚洲二区免费| 新狼窝色av性久久久久久| 久久香蕉精品| 亚洲色图在线视频| 免费视频亚洲| 国产免费成人av| 日韩一级二级三级| 久久久久亚洲综合| 一本色道久久综合狠狠躁篇的优点 | 亚洲精品免费网站| 欧美一区二区性| 欧美午夜免费电影| 亚洲国产福利在线| 欧美在线视频一区| 亚洲精品美女在线| 久久综合成人精品亚洲另类欧美|