青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2104) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美综合二区| 欧美日韩国产免费观看| 国产欧美日韩高清| 欧美一区午夜精品| 性伦欧美刺激片在线观看| 国产精品日韩欧美一区二区| 午夜综合激情| 欧美在线啊v一区| 亚洲国产一区二区在线| 亚洲日本理论电影| 欧美日韩一区国产| 久久精彩免费视频| 米奇777在线欧美播放| 一区二区毛片| 午夜精品影院| 亚洲欧洲综合另类在线| 亚洲夜晚福利在线观看| 影音先锋中文字幕一区二区| 亚洲人体一区| 国产日韩综合| 91久久精品国产91久久| 国产精品中文字幕欧美| 欧美国产精品一区| 国产精品免费电影| 亚洲电影在线免费观看| 国产精品视频男人的天堂| 欧美黄在线观看| 欧美午夜精品久久久久免费视 | 欧美激情综合| 午夜精品久久久99热福利| 老牛国产精品一区的观看方式| 亚洲天堂久久| 欧美第十八页| 久久这里只有精品视频首页| 欧美午夜宅男影院| 亚洲国产欧美一区二区三区丁香婷| 欧美午夜视频在线| 亚洲国产高清在线观看视频| 国产欧美日韩综合一区在线播放| 亚洲精品国产精品国自产观看浪潮 | 亚洲福利国产精品| 国产精品网站一区| 亚洲伦伦在线| 亚洲日本va午夜在线影院| 欧美一区二区精美| 亚洲欧美在线网| 欧美日韩高清在线一区| 欧美激情一区二区久久久| 韩国在线视频一区| 香蕉成人啪国产精品视频综合网| 亚洲一区二区三区四区中文| 欧美精品免费播放| 亚洲国产高潮在线观看| 亚洲国产一二三| 久久亚洲精品网站| 久久免费视频网| 韩日精品视频| 久久精品国产视频| 久久精品成人欧美大片古装| 国产精品一卡二| 亚洲一区www| 欧美一区二区在线视频| 国产精品日韩欧美一区| 亚洲一区精彩视频| 久久国产精品久久久久久久久久| 国产精品视频一二三| 亚洲欧美视频一区| 欧美专区日韩专区| 韩国三级在线一区| 麻豆精品传媒视频| 亚洲国产你懂的| 一本高清dvd不卡在线观看| 欧美日韩精品国产| 亚洲午夜一级| 久久精品国产99精品国产亚洲性色 | 欧美三级日本三级少妇99| 亚洲精品资源| 亚洲欧美日韩精品| 国产区二精品视| 久久精选视频| 亚洲激情视频网| 中文在线资源观看视频网站免费不卡| 欧美日韩国产首页| 午夜精品成人在线视频| 久久永久免费| 99精品国产高清一区二区| 国产精品福利片| 亚洲欧美资源在线| 女人色偷偷aa久久天堂| 在线亚洲一区| 国产视频观看一区| 男人的天堂亚洲| 正在播放亚洲一区| 老司机成人网| 亚洲视频在线观看网站| 国产一区日韩二区欧美三区| 免费美女久久99| 亚洲综合不卡| 亚洲高清视频的网址| 午夜一区二区三区不卡视频| 在线高清一区| 欧美午夜视频| 女主播福利一区| 亚洲一区尤物| 亚洲国产一区在线| 久久久久欧美| 亚洲欧美激情四射在线日 | 亚洲私拍自拍| 黄网站免费久久| 欧美色图五月天| 久久免费视频网站| 亚洲一区二区欧美日韩| 亚洲福利视频二区| 久久精品日韩欧美| 亚洲一区综合| 99国内精品久久| 亚洲成色777777女色窝| 国产日韩久久| 国产精品久久久久久久久久ktv| 老鸭窝91久久精品色噜噜导演| 午夜精品久久久久久久蜜桃app| 亚洲国产精品一区制服丝袜 | 国产在线不卡| 国产精品成人v| 欧美a级一区二区| 久久激情久久| 久久国产精品久久久久久久久久 | 久久激情中文| 亚洲免费中文| 亚洲国产老妈| 麻豆国产精品777777在线| 午夜在线a亚洲v天堂网2018| 亚洲无人区一区| av成人天堂| 一二三四社区欧美黄| 亚洲免费电影在线观看| 91久久精品国产91性色tv| 悠悠资源网亚洲青| 亚洲第一黄网| 亚洲第一福利视频| 91久久黄色| 亚洲精选久久| 一区二区三区精品国产| 亚洲视频福利| 亚洲尤物视频在线| 亚洲影音一区| 久久成人免费网| 久久久久国产一区二区三区四区 | 亚洲一级二级在线| 亚洲一区二区三区中文字幕在线| 一本色道久久88综合亚洲精品ⅰ| av成人免费在线| 亚洲在线日韩| 久久国产视频网| 久久婷婷成人综合色| 欧美高清视频在线| 亚洲大黄网站| 在线亚洲一区| 亚洲欧美一区二区在线观看| 亚洲欧美视频一区二区三区| 久久av一区二区三区| 免费亚洲一区二区| 欧美剧在线观看| 国产精品久久久对白| 国产一区91精品张津瑜| 亚洲第一视频网站| 亚洲美女少妇无套啪啪呻吟| 亚洲制服欧美中文字幕中文字幕| 午夜精品影院| 狼人天天伊人久久| 欧美激情按摩在线| 亚洲特色特黄| 美女视频黄 久久| 欧美系列电影免费观看| 伊人久久综合| 亚洲欧美日韩国产| 男女激情久久| 亚洲私拍自拍| 蜜乳av另类精品一区二区| 国产精品狠色婷| 亚洲国产一成人久久精品| 亚洲少妇自拍| 男人的天堂亚洲| 亚洲一区二区三区中文字幕在线| 久久国产精品色婷婷| 欧美精品在线看| 激情成人中文字幕| 亚洲一区区二区| 亚洲国产日韩欧美在线动漫| 欧美一区二区在线视频| 欧美日韩国产大片| 亚洲国产欧美国产综合一区| 翔田千里一区二区| 亚洲剧情一区二区| 巨胸喷奶水www久久久免费动漫| 国产精品网站在线观看| 99国产精品国产精品久久| 久久亚洲国产精品日日av夜夜| 中日韩午夜理伦电影免费| 欧美激情自拍|