青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2159) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧美视频在线观看视频| 国产精品一区二区男女羞羞无遮挡 | 亚洲男同1069视频| 久久精品91| 欧美一区二区三区免费大片| 欧美激情中文字幕乱码免费| 亚洲精品久久久久| 欧美私人啪啪vps| 中文成人激情娱乐网| 亚洲国产精品久久久| 国产三级欧美三级日产三级99| 亚洲欧洲日本国产| 影音先锋久久资源网| 亚洲免费网站| 新67194成人永久网站| 欧美日韩国产综合新一区| 欧美高清视频在线观看| 国内免费精品永久在线视频| 亚洲欧美视频一区| 欧美尤物一区| 国产精品午夜在线| 亚洲一区二区三区在线看| 亚洲一区二区三区国产| 欧美日韩成人在线| 亚洲精品看片| 亚洲视频免费在线观看| 欧美日产在线观看| 日韩亚洲精品电影| 亚洲欧美日韩人成在线播放| 国产精品久久久久久久午夜片| 日韩特黄影片| 亚洲一区二区视频| 国产精品免费视频观看| 亚洲视频中文| 久久爱另类一区二区小说| 国产精品资源| 久久精品一区四区| 欧美韩国一区| 日韩五码在线| 国产精品a级| 亚洲欧美中文日韩在线| 久久精品视频在线| 在线观看国产精品淫| 六十路精品视频| 99国产精品久久久久久久久久| 亚洲图色在线| 国产精品一级二级三级| 久久精品一本久久99精品| 欧美99久久| 亚洲一区欧美一区| 国产小视频国产精品| 久久中文在线| 中日韩高清电影网| 噜噜噜91成人网| 亚洲最新视频在线播放| 国产精品午夜av在线| 久久精品在这里| 亚洲青色在线| 久久精品99无色码中文字幕| 亚洲国产精品久久久| 欧美日韩影院| 久久亚洲不卡| 一区二区三区久久精品| 久久午夜av| 亚洲一区综合| 在线观看国产精品网站| 国产精品99免费看 | 欧美一级午夜免费电影| 欧美成人精品福利| 亚洲欧美日韩国产成人| 在线免费观看成人网| 欧美三日本三级少妇三2023| 久久国产精品亚洲va麻豆| 亚洲毛片在线看| 久久亚洲图片| 亚洲在线观看视频| 亚洲国产精品高清久久久| 国产精品区一区| 免费亚洲婷婷| 久久精品国产99国产精品澳门| 亚洲精品无人区| 美女爽到呻吟久久久久| 亚洲欧美偷拍卡通变态| 亚洲美女少妇无套啪啪呻吟| 激情欧美国产欧美| 国产精品揄拍一区二区| 欧美日本中文| 欧美国产精品v| 久热精品视频在线观看| 午夜精品av| 亚洲免费网站| 在线视频你懂得一区| 亚洲国产黄色片| 欧美aaa级| 久热精品视频在线观看一区| 久久国产精品一区二区三区四区| 国产精品99久久久久久www| 亚洲国产午夜| 精品动漫一区| 国内精品久久久久久影视8| 国产精品任我爽爆在线播放| 欧美日韩视频一区二区三区| 欧美精品久久99| 牛牛国产精品| 牛人盗摄一区二区三区视频| 久久视频在线免费观看| 久久婷婷国产综合精品青草| 久久九九国产精品| 久久精品国产2020观看福利| 久久国产免费看| 久久www成人_看片免费不卡 | 亚洲欧洲一区二区天堂久久 | 在线视频成人| 精东粉嫩av免费一区二区三区| 国产综合在线看| 韩国女主播一区二区三区| 国产综合色产| 亚洲第一搞黄网站| 亚洲经典自拍| 99re66热这里只有精品4| 日韩亚洲欧美在线观看| 一道本一区二区| 午夜精品成人在线视频| 欧美一区中文字幕| 蜜臀av一级做a爰片久久| 亚洲成色777777在线观看影院| 亚洲电影免费观看高清完整版在线观看 | 亚洲黄色av| 99精品热视频| 亚洲男女毛片无遮挡| 久久久福利视频| 欧美成人精品1314www| 亚洲精品黄色| 亚洲专区一二三| 久久九九99视频| 欧美激情 亚洲a∨综合| 国产精品成人免费| 红桃视频成人| 亚洲最新视频在线| 久久精品国产96久久久香蕉| 欧美成人tv| 一本大道久久a久久精二百| 香蕉久久夜色精品国产| 久久一区精品| 国产精品jizz在线观看美国 | 久久国产精品99久久久久久老狼| 久久久久久有精品国产| 亚洲国产精品久久久久秋霞影院| 一区二区三区免费观看| 久久久久久午夜| 欧美午夜精彩| 亚洲大片精品永久免费| 亚洲私人影吧| 欧美福利视频在线观看| 亚洲视频在线观看三级| 噜噜噜在线观看免费视频日韩| 国产精品久久久久毛片软件| 亚洲国产综合91精品麻豆| 午夜精品在线观看| 亚洲风情在线资源站| 午夜精品亚洲| 欧美日韩精品在线视频| 狠狠色狠狠色综合日日91app| 亚洲亚洲精品在线观看| 六十路精品视频| 午夜精品久久久久久久久久久久 | 亚洲电影成人| 午夜电影亚洲| 亚洲国产一区二区三区在线播| 欧美一区二区三区免费视| 欧美日本在线视频| 精品成人国产| 久久精品最新地址| 亚洲视频播放| 欧美日韩亚洲网| 亚洲日本一区二区| 另类人畜视频在线| 欧美一区二区三区婷婷月色| 欧美性色综合| 亚洲深夜福利网站| 亚洲国产精品日韩| 另类图片国产| 一区二区自拍| 久久永久免费| 欧美在线视频一区| 国产午夜精品麻豆| 香蕉尹人综合在线观看| 亚洲午夜精品网| 国产精品sss| 亚洲欧美一区二区三区在线| 亚洲精品在线观| 欧美精品一区二区蜜臀亚洲| 亚洲激情欧美| 亚洲第一天堂av| 欧美成人在线免费观看| 亚洲三级网站| 日韩视频免费观看高清在线视频| 欧美大片免费观看| 一本色道久久综合亚洲精品不| 亚洲精品黄色|