青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2104) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲天堂av高清| 久久蜜桃av一区精品变态类天堂| 麻豆精品网站| 亚洲日本中文字幕| 国产亚洲毛片| 久久久久久电影| 久久久久在线观看| 亚洲毛片在线观看.| 日韩一级精品视频在线观看| 国产精品爽爽ⅴa在线观看| 久久国产直播| 欧美成人免费va影院高清| 夜夜嗨av一区二区三区四季av| 亚洲免费av片| 黄色一区二区三区四区| 欧美国产日韩一区二区| 欧美日韩一区在线播放| 久久久天天操| 欧美紧缚bdsm在线视频| 午夜精品美女久久久久av福利| 久久精品国产在热久久| 亚洲理论在线观看| 亚洲欧美一区二区三区久久| 欧美精品videossex性护士| 亚洲一区二区三区国产| 久久精品国产v日韩v亚洲 | 欧美一区二区三区免费视| 一区二区在线观看视频在线观看 | 亚洲欧美日韩国产成人| 久久久久久婷| 香蕉久久夜色精品国产使用方法| 久久久亚洲一区| 亚洲欧美日韩国产精品| 免费一级欧美在线大片| 亚洲欧美中文日韩在线| 免费精品视频| 久久久久久久尹人综合网亚洲| 欧美精品成人91久久久久久久| 久久九九国产精品| 欧美视频一区二区三区…| 欧美国产视频一区二区| 国产欧美日韩综合| 9久草视频在线视频精品| 一区二区三区在线不卡| 亚洲欧美亚洲| 午夜精品偷拍| 欧美日韩天天操| 欧美高清影院| 在线观看日韩| 欧美一级视频免费在线观看| 亚洲一区视频| 欧美日韩国产电影| 亚洲国产精品久久久久| 国产一区二区福利| 亚洲欧美偷拍卡通变态| 亚洲欧美在线高清| 欧美日韩在线另类| 99v久久综合狠狠综合久久| 亚洲精品国产品国语在线app| 久久精品人人做人人爽| 久久久精品网| 韩国v欧美v日本v亚洲v| 欧美一区二区网站| 久久九九热免费视频| 国产日韩欧美a| 香蕉久久夜色精品国产使用方法| 午夜久久久久久| 国产欧美日韩中文字幕在线| 亚洲自拍偷拍一区| 久久aⅴ国产欧美74aaa| 国产日韩欧美电影在线观看| 欧美与黑人午夜性猛交久久久| 久久久久久久久蜜桃| 国模吧视频一区| 蜜桃久久av| 亚洲精品在线一区二区| 亚洲欧美另类久久久精品2019| 国产精品性做久久久久久| 欧美一区=区| 美女脱光内衣内裤视频久久网站| 在线精品视频一区二区| 欧美精品激情在线| 一区二区三区欧美激情| 久久精品国产第一区二区三区| 国产色视频一区| 久久久久久久网站| 亚洲人成77777在线观看网| 亚洲一区二区三区精品在线| 国产精品午夜在线| 麻豆av福利av久久av| 亚洲久久成人| 久久成人精品一区二区三区| 精品动漫3d一区二区三区| 欧美国产视频日韩| 亚洲一区二区三区影院| 久久综合免费视频影院| 国产精品www色诱视频| 性欧美xxxx大乳国产app| 欧美xart系列高清| 亚洲免费在线精品一区| 亚洲国产成人91精品| 欧美综合国产| 亚洲精品国产精品国自产观看浪潮 | 亚洲一区二区四区| 久久伊人亚洲| 亚洲自拍三区| 亚洲国内自拍| 国产日韩欧美日韩| 欧美日韩一区二区三区在线 | 欧美精品一区三区在线观看| 欧美成人精品三级在线观看 | 激情亚洲网站| 国产精品成人一区二区网站软件| 久久久999精品| 亚洲小少妇裸体bbw| 欧美成人一区二免费视频软件| 亚洲综合国产激情另类一区| 在线视频国产日韩| 国产日韩欧美夫妻视频在线观看| 欧美日本一区二区高清播放视频| 久久精品噜噜噜成人av农村| 中国av一区| 99在线视频精品| 亚洲成人在线视频播放| 国产精品视频免费| 免费精品视频| 久久久天天操| 久久国产精品久久久久久电车| 亚洲午夜一区二区三区| 日韩图片一区| 亚洲人成毛片在线播放女女| 欧美黄色aa电影| 免费日本视频一区| 久久久亚洲午夜电影| 久久国产加勒比精品无码| 亚洲女性裸体视频| 亚洲视频网在线直播| 一本色道久久综合| 日韩视频在线永久播放| 亚洲精选中文字幕| 亚洲精品一区二区三区av| 亚洲国产另类 国产精品国产免费| 好吊色欧美一区二区三区视频| 国产日产高清欧美一区二区三区| 国产精品久久久久一区二区| 欧美性生交xxxxx久久久| 欧美日一区二区在线观看| 欧美日韩和欧美的一区二区| 欧美日韩国产在线| 国产精品扒开腿做爽爽爽软件 | 欧美精品在线视频| 欧美片在线观看| 欧美视频国产精品| 国产精品五月天| 国语自产精品视频在线看一大j8| 黄色成人片子| 亚洲精品综合精品自拍| 一区二区欧美国产| 先锋资源久久| 久久三级福利| 亚洲国产另类精品专区| 99国产精品久久久久久久久久| 亚洲一区二区三区在线| 久久aⅴ国产紧身牛仔裤| 麻豆视频一区二区| 欧美色偷偷大香| 国产亚洲精品综合一区91| 在线观看成人一级片| 亚洲精品一区二区三区四区高清| 亚洲一区二区三区精品在线观看 | 99视频在线观看一区三区| 一区二区三区国产精华| 欧美一区二区三区免费在线看| 久久久久免费视频| 亚洲人午夜精品| 午夜在线一区| 欧美国产大片| 国产日韩欧美不卡| 亚洲美女在线看| 久久久久久69| 一区二区精品在线观看| 性欧美xxxx大乳国产app| 欧美福利网址| 黑人巨大精品欧美黑白配亚洲| 日韩视频免费在线| 久久久久久尹人网香蕉| 日韩视频在线永久播放| 久久久精品动漫| 国产精品毛片a∨一区二区三区|国| 狠狠色狠狠色综合日日小说| 亚洲视频免费在线观看| 女生裸体视频一区二区三区| 一区二区国产日产| 欧美高清视频在线| 激情久久久久久| 午夜精品影院在线观看| 亚洲人成人77777线观看| 久久精品一区中文字幕| 国产麻豆日韩欧美久久| 亚洲一级高清|