青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2056) 評(píng)論(9)  編輯 收藏 引用

評(píng)論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復(fù)  更多評(píng)論   


只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲高清毛片| 欧美精品网站| 麻豆精品视频在线观看视频| 久久爱www.| 欧美在线看片a免费观看| 校园春色国产精品| 久久国产精品99精品国产| 久久久久高清| 欧美国产视频在线| 亚洲精品一级| 亚洲视频综合在线| 欧美影院在线播放| 欧美/亚洲一区| 国产精品99免费看| 国产一区二区三区丝袜| 欧美夫妇交换俱乐部在线观看| 亚洲成色精品| 在线视频你懂得一区| 欧美一级淫片aaaaaaa视频| 久久久久成人精品| 亚洲人在线视频| 亚洲欧洲一区二区三区| 亚洲欧美日韩精品久久久久| 久久天堂成人| 国产精品大片wwwwww| 亚洲国产精品欧美一二99| 亚洲自拍都市欧美小说| 麻豆国产精品va在线观看不卡| 亚洲精品在线观看免费| 欧美伊人久久| 欧美日韩无遮挡| 亚洲福利电影| 久久久国产精品一区二区三区| 最新国产成人av网站网址麻豆| 午夜精品美女自拍福到在线| 欧美激情视频一区二区三区免费| 国产亚洲精品久久久久婷婷瑜伽| 99re6热在线精品视频播放速度| 久久亚洲私人国产精品va| 在线视频精品一区| 欧美精品aa| 亚洲大胆人体视频| 久久精品99久久香蕉国产色戒| 日韩视频欧美视频| 欧美激情精品久久久久久久变态| 狠狠色丁香婷婷综合久久片| 欧美一级免费视频| 亚洲视频每日更新| 欧美性理论片在线观看片免费| 亚洲人在线视频| 欧美xart系列高清| 久久久亚洲国产天美传媒修理工| 国产日韩av在线播放| 先锋影音网一区二区| 一本色道久久加勒比精品| 欧美精品一卡二卡| 亚洲精选久久| 亚洲国产欧美一区| 老司机久久99久久精品播放免费| 国内自拍一区| 免费不卡在线观看av| 久久黄金**| 黄色欧美成人| 欧美国产日韩视频| 欧美成人精品福利| 日韩午夜三级在线| 99精品久久久| 国产精品久久7| 午夜精品一区二区三区在线| 一区二区三区欧美日韩| 国产精品乱子乱xxxx| 欧美一区二区高清在线观看| 欧美主播一区二区三区| 精品福利av| 欧美中文在线观看国产| 国产午夜久久| 久久频这里精品99香蕉| 久久久久久成人| 91久久久久久国产精品| 亚洲免费观看| 国产女主播视频一区二区| 久久久久久自在自线| 卡一卡二国产精品| 一本色道久久综合亚洲精品不卡| 亚洲最新在线视频| 国产亚洲欧美激情| 欧美成年视频| 国产精品久久久久久久久久久久久 | 国内精品**久久毛片app| 免费在线看一区| 欧美精品综合| 久久精品国产一区二区三| 欧美成人自拍视频| 欧美一区不卡| 欧美成人精品一区| 性欧美精品高清| 欧美va亚洲va国产综合| 欧美在线视频网站| 免费在线看一区| 欧美一区二区免费| 欧美电影在线观看完整版| 欧美在线三级| 欧美日韩精品一区二区天天拍小说| 欧美亚洲网站| 欧美久久电影| 欧美fxxxxxx另类| 国产精品第一区| 亚洲国产日韩欧美| 国产精品一卡二卡| 亚洲黄色一区二区三区| 国产在线国偷精品产拍免费yy| 亚洲精品国精品久久99热| 国产午夜久久久久| 国产精品99久久99久久久二8 | 一本大道久久a久久综合婷婷| 午夜精品视频在线观看| 99视频精品| 免费欧美日韩国产三级电影| 欧美一区永久视频免费观看| 欧美大成色www永久网站婷| 久久精品一区二区国产| 国产精品r级在线| 亚洲精品一级| 亚洲精品一二三区| 另类天堂视频在线观看| 久久久久国产精品一区| 国产精品女主播一区二区三区| 亚洲人成人99网站| 尤物yw午夜国产精品视频| 性色一区二区三区| 欧美在线观看视频一区二区三区| 欧美日韩免费观看一区三区| 91久久精品视频| 久久亚洲不卡| 一区二区三区国产盗摄| 亚洲精品一区二区在线| 久久久噜噜噜久噜久久| 久久本道综合色狠狠五月| 欧美色综合网| 一区二区三区三区在线| 亚洲自拍三区| 国产精品久久久久免费a∨大胸| 亚洲精品国产系列| 亚洲一二三区精品| 欧美日韩免费| 亚洲一区观看| 久久成人精品无人区| 国产亚洲精品久久久| 久久久久久91香蕉国产| 欧美gay视频| 一区二区三区 在线观看视频| 欧美日本国产精品| 一本色道久久99精品综合 | 亚洲午夜高清视频| 午夜精品一区二区三区电影天堂 | 亚洲一线二线三线久久久| 性欧美1819sex性高清| 国产一区视频在线观看免费| 久久久精品五月天| 亚洲欧洲精品天堂一级| 亚洲欧美www| 国产精品美女主播| 久久爱91午夜羞羞| 欧美成人免费一级人片100| aa级大片欧美三级| 国产精品素人视频| 久久这里只有| 国产精品99久久久久久久久久久久| 欧美一区二区三区久久精品茉莉花 | 性色av一区二区三区在线观看 | 久久久福利视频| 亚洲三级免费观看| 国产精品视频久久| 久久久久久香蕉网| 亚洲精品视频啊美女在线直播| 亚洲午夜视频| 亚洲成人资源网| 国产精品美女诱惑| 欧美成人激情在线| 午夜在线成人av| 亚洲精品1234| 久久久国产精品一区| 亚洲视频在线一区| 永久555www成人免费| 国产精品v欧美精品v日本精品动漫 | 久久aⅴ国产紧身牛仔裤| 亚洲国产精品电影在线观看| 欧美1区2区视频| 亚洲欧美日韩久久精品| 亚洲精品乱码| 欧美不卡一区| 久久久久久久久蜜桃| 欧美一区二区日韩| 亚洲一区二区视频在线| 亚洲大黄网站| 国产专区欧美专区| 国产精品美女久久久久av超清| 欧美猛交免费看| 欧美a级大片| 免费永久网站黄欧美|