青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2103) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧美成人精品| 久色成人在线| 欧美日韩国产综合一区二区| 欧美福利视频在线观看| 久久久久久久91| 久久美女性网| 欧美国产日韩一二三区| 欧美精品激情在线| 欧美日韩国产综合视频在线观看 | 国产精品伦一区| 国产小视频国产精品| 加勒比av一区二区| 亚洲精品九九| 欧美一级欧美一级在线播放| 久久一区二区三区国产精品| 亚洲激情视频在线| 日韩一区二区久久| 欧美专区第一页| 欧美高清影院| 国产精品一区在线观看你懂的| 黑人一区二区三区四区五区| 亚洲麻豆av| 久久久亚洲一区| 亚洲精品无人区| 久久9热精品视频| 欧美日韩在线影院| 亚洲激情成人网| 性欧美激情精品| 亚洲国产日韩综合一区| 亚洲欧美日韩网| 欧美日韩成人| 亚洲第一区色| 久久经典综合| 亚洲天堂免费观看| 毛片一区二区三区| 国产一区二区三区四区三区四| 亚洲激情啪啪| 久久欧美中文字幕| 在线综合欧美| 欧美啪啪一区| 亚洲精品综合| 欧美成人精品不卡视频在线观看| 亚洲永久免费| 欧美亚日韩国产aⅴ精品中极品| 黄色另类av| 久久综合给合久久狠狠色| 亚洲欧美成人一区二区三区| 欧美午夜精品久久久| 亚洲免费福利视频| 欧美国产第二页| 久久深夜福利| 一区二区三区在线观看欧美| 欧美在线黄色| 亚洲欧美第一页| 免费在线亚洲| 欧美不卡高清| 黄色国产精品| 久久久久成人网| 亚洲欧美日韩国产成人精品影院| 欧美日韩成人网| 亚洲午夜精品久久久久久app| 亚洲精品国产精品乱码不99按摩 | 亚洲片区在线| 欧美激情第8页| 欧美国产综合视频| 亚洲乱码国产乱码精品精天堂| 欧美成人一区二区| 欧美电影专区| 在线亚洲电影| 99精品热视频只有精品10| 欧美日韩高清在线观看| 亚洲社区在线观看| 亚洲欧美色一区| 激情综合亚洲| 亚洲成在线观看| 国产精品久久久999| aⅴ色国产欧美| 中文日韩在线| 国产一区二区三区在线观看网站| 久久激情综合| 麻豆成人小视频| 亚洲美女诱惑| 亚洲一级二级| 一区二区在线不卡| 最新亚洲一区| 国产欧美精品xxxx另类| 久久久久久一区二区三区| 另类尿喷潮videofree| 亚洲无线视频| 欧美在线视频一区二区| 亚洲国产精品专区久久| 一本不卡影院| 一区二区视频在线观看| 亚洲精品视频一区二区三区| 国产欧美日韩另类一区| 欧美freesex交免费视频| 欧美精品一区二区三区在线播放| 欧美亚洲网站| 欧美成人免费全部观看天天性色| 亚洲免费影视第一页| 久久香蕉精品| 久久超碰97人人做人人爱| 欧美大片免费| 久久综合狠狠综合久久综合88 | 久久精品在线观看| 欧美国产一区在线| 久久久久久久网站| 国产精品成人观看视频国产奇米| 久久在线91| 国产精品视频第一区| 亚洲国产一成人久久精品| 欧美激情一二三区| 国产主播一区二区三区四区| 欧美第一黄网免费网站| 国产日韩在线视频| 国产精品久久久久久久久| 欧美高清视频| 国产亚洲精品自拍| 夜夜爽夜夜爽精品视频| 亚洲精品在线观看免费| 久久偷窥视频| 久久美女艺术照精彩视频福利播放| 欧美久久影院| 最新国产拍偷乱拍精品| 亚洲丰满少妇videoshd| 久久精品国产2020观看福利| 性欧美video另类hd性玩具| 欧美精品xxxxbbbb| 欧美大片在线观看| 国内自拍亚洲| 久久er99精品| 久久久亚洲高清| 国产一区二区三区的电影| 亚洲一区二区三| 午夜日韩福利| 国产视频在线观看一区| 亚洲一区自拍| 欧美在线一区二区三区| 国产精品制服诱惑| 亚洲欧美在线播放| 久久精品视频在线播放| 国产香蕉久久精品综合网| 欧美中文在线观看国产| 久久精品视频一| 亚洲福利视频二区| 欧美激情自拍| 9i看片成人免费高清| 亚洲男女自偷自拍| 国产女主播视频一区二区| 久久xxxx精品视频| 欧美 日韩 国产精品免费观看| 亚洲成色www久久网站| 欧美ed2k| 亚洲午夜精品福利| 久久视频免费观看| 亚洲免费电影在线观看| 欧美视频在线看| 久久精品国产久精国产爱| 亚洲国产黄色片| 99精品国产一区二区青青牛奶| 欧美午夜不卡在线观看免费| 校园春色国产精品| 欧美高清一区二区| 亚洲一区久久| 伊人成人开心激情综合网| 欧美激情在线播放| 欧美一区二区啪啪| 亚洲精品九九| 久久亚洲国产精品日日av夜夜| 亚洲国产精品热久久| 欧美性天天影院| 玖玖国产精品视频| 亚洲无限av看| 亚洲成色www久久网站| 欧美制服第一页| 亚洲精品欧美日韩| 国产日韩欧美二区| 欧美乱妇高清无乱码| 欧美一区二区视频在线观看| 最新精品在线| 免费人成精品欧美精品| 欧美一区二区观看视频| 午夜一区二区三视频在线观看| 亚洲激情网址| 欧美在线播放一区| 99视频一区| 在线播放国产一区中文字幕剧情欧美| 欧美另类久久久品| 久久一区二区三区超碰国产精品| 一区二区三区欧美激情| 亚洲福利一区| 久久一区精品| 久久精品日产第一区二区三区| 在线亚洲自拍| 亚洲欧洲日本mm| 在线不卡亚洲| 国内一区二区三区在线视频| 国产精品系列在线| 欧美午夜剧场| 欧美日韩性视频在线|