青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2103) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久婷婷久久| 亚洲欧美卡通另类91av| 欧美视频在线播放| 日韩午夜三级在线| 亚洲资源在线观看| 国产伦精品一区二区三区四区免费| 亚洲无玛一区| 久久婷婷丁香| 亚洲精品影视| 国产噜噜噜噜噜久久久久久久久 | 久久亚洲精品中文字幕冲田杏梨| 国产一区二区三区在线观看免费 | 亚洲午夜羞羞片| 国产日韩欧美视频| 久久久久久久999| 99精品热视频| 久久亚洲精品伦理| 亚洲视频网在线直播| 韩国久久久久| 欧美日韩亚洲国产精品| 久久精品国产99国产精品| 亚洲黄色有码视频| 欧美在线精品一区| 亚洲精品免费网站| 国产日韩欧美高清免费| 欧美精品色一区二区三区| 午夜在线观看欧美| 91久久精品国产91性色tv| 久久亚洲综合网| 午夜久久黄色| 在线亚洲精品| 亚洲精品免费网站| 国产亚洲欧美日韩日本| 欧美色网在线| 欧美精品在线播放| 欧美aⅴ一区二区三区视频| 午夜精品一区二区三区在线视| 91久久精品美女高潮| 美日韩在线观看| 久久人人97超碰精品888| 亚洲图片激情小说| 欧美日本一区二区高清播放视频| 国产在线欧美日韩| 国产精品爱久久久久久久| 久久亚洲美女| 久久精品99国产精品| 一区二区三区视频在线| 亚洲日韩第九十九页| 免费成人黄色| 欧美成人蜜桃| 欧美freesex交免费视频| 久久久久国色av免费看影院 | 久久精品在线免费观看| 亚洲尤物影院| 亚洲视频一区| 亚洲午夜视频在线观看| 99视频精品全部免费在线| 亚洲国产午夜| 亚洲精品久久久一区二区三区| 亚洲二区在线观看| 亚洲成色精品| 99天天综合性| 亚洲欧美亚洲| 午夜在线一区二区| 久久久久国产一区二区| 久久精品一区中文字幕| 美日韩精品视频| 亚洲国产精品一区二区久| 亚洲第一二三四五区| 亚洲福利视频三区| 亚洲日本欧美天堂| 亚洲视频观看| 久久国产免费| 狂野欧美一区| 欧美日韩一区高清| 国产日韩欧美自拍| 在线成人免费视频| 一区二区欧美日韩| 午夜亚洲伦理| 欧美v日韩v国产v| 亚洲美女免费视频| 小辣椒精品导航| 欧美成人午夜激情在线| 欧美午夜不卡视频| 国产日韩一区二区三区在线播放 | 久久夜色精品国产欧美乱| 老鸭窝毛片一区二区三区 | 欧美日韩xxxxx| 国产精品永久免费| 亚洲国产欧美一区二区三区同亚洲| 99成人精品| 久久人人九九| 国产精品99久久久久久久女警 | 国产精品观看| 欧美视频在线视频| 欧美性生交xxxxx久久久| 国产精品久久777777毛茸茸| 国产专区综合网| 9人人澡人人爽人人精品| 久久精品99国产精品酒店日本| 欧美成人午夜激情视频| 亚洲一区国产一区| 欧美暴力喷水在线| 国产一区二区三区久久| 亚洲午夜激情| 欧美激情精品久久久久久大尺度| 亚洲一区日本| 欧美精品一区三区在线观看| 在线成人av.com| 久久久国产精品一区二区中文 | 亚洲永久精品大片| 欧美激情综合五月色丁香小说| 国产一区二区在线观看免费播放 | 黑人巨大精品欧美黑白配亚洲| 日韩亚洲欧美成人| 蜜臀91精品一区二区三区| 午夜精品久久久久| 国产精品免费看| 一区二区三区产品免费精品久久75| 欧美国产日韩精品| 久久久久国产精品麻豆ai换脸| 国产精品人人做人人爽| 一区二区久久久久| 欧美激情久久久久| 久久爱www久久做| 国产精品麻豆成人av电影艾秋| 99re6热在线精品视频播放速度| 麻豆精品一区二区av白丝在线| 欧美一区影院| 国产视频欧美| 久久精品中文字幕一区| 欧美在线观看一区二区三区| 国产欧美在线视频| 久久se精品一区精品二区| 欧美一区二区三区日韩视频| 国产一区二区三区的电影| 久久色中文字幕| 欧美一区二区视频免费观看| 久久久久国色av免费看影院 | 狂野欧美一区| 久久天天躁夜夜躁狠狠躁2022| 国产亚洲人成a一在线v站 | 久久久久久久久久久成人| 有坂深雪在线一区| 欧美 日韩 国产 一区| 欧美成人一区二区在线 | 久久国产66| 久久视频精品在线| 亚洲人成在线观看一区二区| 亚洲高清视频在线| 欧美激情按摩在线| 在线视频精品| 亚洲综合激情| 亚洲第一毛片| 亚洲国产精品美女| 欧美在线电影| 久久久久久久国产| 99国产精品久久久久久久成人热| 亚洲深夜福利| 一区精品在线| 日韩视频永久免费观看| 国产日韩欧美在线播放| 免费看的黄色欧美网站| 欧美性理论片在线观看片免费| 久久久久99| 欧美激情视频一区二区三区不卡| 亚洲欧美日韩国产中文 | 欧美日韩一区二区三区四区在线观看 | 亚洲国产精彩中文乱码av在线播放| 亚洲人成艺术| 国产综合色产在线精品| 亚洲人成免费| 国产一区高清视频| 日韩一级在线| 亚洲乱码国产乱码精品精可以看| 亚洲在线播放电影| 99热在这里有精品免费| 亚洲一区二区三区中文字幕| 亚洲人成在线影院| 久久精品官网| 欧美一区二区视频在线观看2020| 在线一区视频| 蜜臀va亚洲va欧美va天堂| 午夜亚洲福利| 欧美精品在线免费观看| 欧美成人精品一区二区三区| 国产精品久久久爽爽爽麻豆色哟哟| 欧美成在线观看| 国产一区自拍视频| 亚洲免费在线看| 一区二区三区色| 免费久久精品视频| 久久久之久亚州精品露出| 欧美—级a级欧美特级ar全黄| 久久综合国产精品| 国产日韩精品入口| 午夜一区二区三区在线观看 | 久久av一区二区| 国产精品伊人日日| 亚洲综合首页|