青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2160) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            老司机午夜精品视频| 亚洲激情第一页| av不卡在线观看| 欧美精品一线| 这里只有精品丝袜| 日韩视频精品| 国产欧美日本一区二区三区| 欧美高清自拍一区| 夜夜爽夜夜爽精品视频| 日韩视频欧美视频| 国产精品伦一区| 久久精品一区中文字幕| 久久精品国产久精国产爱| 红桃视频成人| 亚洲国产综合视频在线观看| 欧美精品一区二区在线播放| 亚洲欧美在线网| 久久精品国产亚洲精品| 亚洲人成网站在线观看播放| 亚洲精品欧美精品| 国产精品影片在线观看| 久久精品国产第一区二区三区最新章节| 中文国产成人精品| 亚洲免费在线播放| 亚洲国产精品国自产拍av秋霞| 最新国产精品拍自在线播放| 亚洲国产精品va在线看黑人 | 国产在线精品一区二区夜色| 久久这里有精品15一区二区三区| 亚洲欧洲午夜| 国产女人18毛片水18精品| 久久国产视频网| 欧美精品一区二区三区在线播放| 伊人久久婷婷| 亚洲日韩第九十九页| 国产日韩欧美在线播放| 91久久综合亚洲鲁鲁五月天| 国产日韩综合| 一区二区三区高清视频在线观看| 欧美黄免费看| 久久久久久久久久久成人| 欧美va亚洲va日韩∨a综合色| 狠狠操狠狠色综合网| 亚洲人成精品久久久久| 精品成人在线视频| 亚洲深夜av| 亚洲精品免费在线播放| 久久久久久高潮国产精品视| 午夜精品在线| 欧美日韩性视频在线| 欧美激情a∨在线视频播放| 国产日韩欧美在线看| 亚洲无限av看| 一区二区高清在线| 欧美成人免费在线视频| 久久午夜色播影院免费高清| 国产精品爽爽爽| 宅男噜噜噜66一区二区| 一本一本久久a久久精品综合妖精| 日韩一级欧洲| 99精品热视频| 欧美大片一区| 亚洲人久久久| 亚洲第一区在线观看| 久久久久久夜| 久热re这里精品视频在线6| 国产一区二区三区在线免费观看| 老司机精品视频一区二区三区| 久久久久久网| 免费不卡在线观看av| 韩国av一区二区三区四区| 久久国产精品久久久久久电车| 亚洲第一页在线| 久久精品国产亚洲一区二区三区 | 欧美精品一区二区久久婷婷| 欧美大秀在线观看| 亚洲国产成人久久综合| 免费黄网站欧美| 亚洲精品国产精品乱码不99按摩| 国产精品99免视看9| 中日韩男男gay无套| 亚洲一区二区三区乱码aⅴ蜜桃女| 亚洲综合国产激情另类一区| 欧美在线视频一区| 国内偷自视频区视频综合| 久久久久免费观看| 亚洲高清不卡| 亚洲香蕉视频| 国产日韩欧美中文在线播放| 久久性天堂网| 日韩视频一区二区| 午夜亚洲一区| 亚洲丰满在线| 欧美日韩精品久久| 午夜精品免费视频| 嫩草伊人久久精品少妇av杨幂| 欧美午夜精品理论片a级大开眼界| 久久精品国产欧美激情 | 亚洲看片网站| 欧美在线看片a免费观看| 好吊妞**欧美| 欧美日韩二区三区| 性欧美长视频| 亚洲精品久久嫩草网站秘色| 销魂美女一区二区三区视频在线| 欧美精品电影| 亚洲欧美制服中文字幕| 欧美成人综合网站| 午夜精品亚洲一区二区三区嫩草| 欧美国产1区2区| 午夜视频在线观看一区| 亚洲电影网站| 久久久www免费人成黑人精品 | 欧美sm视频| 亚洲图片在线观看| 欧美成人免费在线视频| 亚洲欧美一区二区激情| 在线日本高清免费不卡| 国产精品久久久久久超碰| 久久精品欧美| 亚洲一区二区在线视频| 亚洲国产精品久久久久| 久久频这里精品99香蕉| 亚洲欧美制服中文字幕| 日韩视频一区二区在线观看 | 亚洲自拍偷拍麻豆| 欧美福利一区二区| 午夜久久久久| 一区二区三区高清| 欧美精品日日鲁夜夜添| 久久成人国产| 午夜一区二区三区不卡视频| 亚洲欧洲精品一区二区三区波多野1战4 | 欧美成人乱码一区二区三区| 亚洲综合国产激情另类一区| 99riav久久精品riav| 亚洲激情av| 欧美激情1区2区3区| 久久亚洲精品网站| 久久久久久夜精品精品免费| 欧美一级欧美一级在线播放| 亚洲一区二区精品视频| 亚洲视频每日更新| 99国产精品99久久久久久| 亚洲精品自在久久| 亚洲精品免费一区二区三区| 亚洲国产婷婷| 亚洲国产一区二区三区a毛片| 欧美日韩精品在线观看| 欧美精品国产精品日韩精品| 欧美14一18处毛片| 欧美成人乱码一区二区三区| 欧美.com| 欧美日韩三级| 欧美日韩综合| 国产免费成人| 国模 一区 二区 三区| 激情综合色综合久久| 亚洲国产天堂网精品网站| 亚洲人成毛片在线播放女女| 亚洲精品欧洲| 一区二区国产日产| 亚洲一区观看| 久久精品成人一区二区三区蜜臀| 亚洲精品乱码久久久久久黑人 | 国产欧美日韩在线观看| 国产日韩欧美精品综合| 国内成人自拍视频| 91久久精品国产91久久性色tv| 欧美视频中文字幕在线| 欧美午夜精品久久久久久人妖| 久久精品视频99| 男人天堂欧美日韩| 欧美日韩国产一区| 国产日韩欧美综合| 亚洲国内精品| 亚洲欧美中文另类| 久久久久综合一区二区三区| 美日韩在线观看| 亚洲美女黄色片| 久久狠狠婷婷| 欧美日在线观看| 悠悠资源网亚洲青| 亚洲一级二级在线| 老司机精品视频网站| 亚洲天堂av在线免费| 久久只有精品| 国产精品亚发布| 亚洲美女在线一区| 久久激五月天综合精品| 亚洲日本va午夜在线电影| 欧美亚洲网站| 欧美视频一区二区| 亚洲国产成人精品女人久久久| 精品成人在线观看| 亚洲一区在线看| 亚洲国产日韩欧美在线99| 欧美在线观看日本一区| 欧美性猛交视频| 亚洲欧洲综合|