青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2160) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美日韩国产亚洲一区 | 国产精品毛片| 欧美涩涩网站| 国产综合第一页| 1024成人网色www| 亚洲视频免费看| 久久嫩草精品久久久久| 亚洲电影免费在线观看| 99国产麻豆精品| 欧美一区免费视频| 欧美激情一区二区三区全黄| 一本色道久久综合狠狠躁的推荐| 亚洲综合激情| 欧美成人一区二区三区片免费| 国产精品成人观看视频免费| 亚洲国产精品成人精品| 欧美怡红院视频| 久久精品中文| 国产精品久久7| 久久久国产精品亚洲一区 | 久久久久成人精品免费播放动漫| 欧美在线免费观看| 欧美性猛交一区二区三区精品| 亚洲电影第1页| 亚洲日本成人在线观看| 久久在线免费观看| 国产日韩欧美a| 午夜亚洲精品| 一卡二卡3卡四卡高清精品视频| 国产精自产拍久久久久久| 99精品99| 欧美在线一区二区| 亚洲视频免费在线| 久久久久久综合| 一色屋精品亚洲香蕉网站| 久久久亚洲午夜电影| 欧美国产日韩一区二区在线观看| 亚洲国产精品一区| 亚洲一区二区在线免费观看视频| 欧美日韩亚洲一区二区| 日韩午夜av| 欧美一级理论性理论a| 国产精品视频xxx| 久久国产精品久久国产精品| 午夜视频久久久久久| 国产午夜精品一区理论片飘花| 亚洲国产欧美久久| 欧美日韩久久不卡| 欧美ed2k| 欧美激情一区三区| 亚洲午夜在线观看视频在线| 在线一区二区三区四区| 国产精品一区在线播放| 亚洲精品美女久久久久| 亚洲第一精品福利| 欧美在线www| 欧美伊人久久| 国产精品日韩久久久| 亚洲精品日产精品乱码不卡| 欧美系列亚洲系列| 亚洲日本国产| 99国内精品久久| 欧美激情精品久久久久久蜜臀 | 亚洲国产日韩欧美在线动漫| 亚洲第一精品久久忘忧草社区| 国内成人精品视频| 午夜久久一区| 久久久久久亚洲精品杨幂换脸| 国产欧美韩日| 欧美激情一区二区三区蜜桃视频 | 欧美日韩亚洲视频| 亚洲精品乱码| 在线视频精品一区| 欧美一区二区三区视频在线| 香蕉久久精品日日躁夜夜躁| 久久综合999| 欧美成人国产| 亚洲另类春色国产| 欧美一级成年大片在线观看| 久久国产主播精品| 欧美精品一卡| 中国av一区| 久久不见久久见免费视频1| 国产午夜亚洲精品羞羞网站 | 亚洲神马久久| 久久精品国产69国产精品亚洲| 国内精品伊人久久久久av影院| 欧美一区二区| 亚洲成人在线免费| 亚洲小说春色综合另类电影| 欧美私人网站| 欧美亚洲免费高清在线观看| 麻豆精品在线视频| 国产精品三上| 久久视频国产精品免费视频在线 | 国语自产精品视频在线看抢先版结局 | 亚洲国产另类 国产精品国产免费| 亚洲精选国产| 国产精品久久久一区麻豆最新章节 | 一区二区日韩欧美| 国产欧美精品一区二区三区介绍| 久久gogo国模裸体人体| 亚洲欧洲精品成人久久奇米网| 韩国三级电影久久久久久| 欧美韩日高清| 亚洲综合色视频| 亚洲第一免费播放区| 亚洲欧美在线x视频| 亚洲国产精品福利| 国产精品久久久久免费a∨| 久久国内精品自在自线400部| 欧美在线看片| 夜夜嗨av一区二区三区中文字幕| 久久久久久亚洲精品中文字幕| 亚洲精品视频在线观看网站| 久久精品一二三| 亚洲视频播放| 亚洲狠狠丁香婷婷综合久久久| 国产精品视频精品| 欧美激情综合五月色丁香| 欧美一区二区在线播放| 99re热这里只有精品视频| 中文精品在线| 亚洲黄色免费电影| 国产自产女人91一区在线观看| 国产精品电影观看| 欧美国产一区在线| 久久五月婷婷丁香社区| 午夜亚洲性色福利视频| 一区二区三区四区国产| 亚洲福利电影| 欧美激情国产日韩精品一区18| 久久精品成人一区二区三区蜜臀| 亚洲自拍都市欧美小说| 国产精品一区二区三区观看| 欧美日韩成人激情| 欧美gay视频| 日韩一级不卡| 亚洲看片网站| 亚洲欧洲另类| 亚洲区中文字幕| 亚洲电影免费观看高清| 欧美成人免费网| 亚洲视频你懂的| 99精品欧美一区二区三区| 亚洲国产电影| 亚洲精品久久久久久久久久久久久 | 国产精品日韩在线| 国产精品电影观看| 欧美午夜激情小视频| 欧美色一级片| 国产精品欧美一区二区三区奶水 | 欧美精品偷拍| 欧美日韩精品在线| 欧美性开放视频| 国产精品v欧美精品v日本精品动漫| 欧美人与禽性xxxxx杂性| 欧美亚洲一级| 久久久久成人精品| 久久人人97超碰精品888| 老司机精品久久| 欧美国产日韩xxxxx| 欧美日韩一区国产| 国产精品美女久久久久aⅴ国产馆| 欧美性做爰毛片| 国产日韩欧美一区二区| 好男人免费精品视频| 亚洲精美视频| 亚洲午夜高清视频| 欧美在线观看日本一区| 久久久999国产| 欧美黄色aaaa| 一区二区国产在线观看| 亚欧成人精品| 欧美顶级艳妇交换群宴| 国产精品久久夜| 黄色av日韩| 一本色道久久| 久久精品亚洲热| 亚洲国产日韩欧美综合久久| 夜夜嗨av色一区二区不卡| 欧美国产高清| 亚洲亚洲精品在线观看| 亚洲免费观看高清完整版在线观看熊 | 美女性感视频久久久| 久久成人在线| 欧美日本在线视频| 国产亚洲精品aa| 国产欧美在线视频| 亚洲日韩欧美视频| 久久狠狠久久综合桃花| 亚洲区中文字幕| 久久久精品一区二区三区| 欧美日韩国产限制| 亚洲成人在线| 欧美在线一二三区| 99re国产精品| 欧美不卡视频| 狠狠色香婷婷久久亚洲精品| 亚洲一区二区三区午夜|