• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Point in triangle test

            http://www.blackpawn.com/texts/pointinpoly/default.html

            Same Side Technique

            A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

            First off, forgive the nasty coloring. I'm really sorry about it. Honest.

            Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

            For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

            But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


            If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

            The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

            So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

            Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

            function SameSide(p1,p2, a,b)
                        cp1 = CrossProduct(b-a, p1-a)
                        cp2 = CrossProduct(b-a, p2-a)
                        if DotProduct(cp1, cp2) >= 0 then return true
                        else return false
                        function PointInTriangle(p, a,b,c)
                        if SameSide(p,a, b,c) and SameSide(p,b, a,c)
                        and SameSide(p,c, a,b) then return true
                        else return false
                        

            It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



            Barycentric Technique

            The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

            Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

            So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

            With that in mind we can now describe any point on the plane as

                P = A + u * (C - A) + v * (B - A)

            Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

            Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

                P = A + u * (C - A) + v * (B - A)       // Original equation
            (P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
            v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
            // We have two unknowns (u and v) so we need two equations to solve
            // for them.  Dot both sides by v0 to get one and dot both sides by
            // v1 to get a second.
            (v2) . v0 = (u * v0 + v * v1) . v0
            (v2) . v1 = (u * v0 + v * v1) . v1
            // Distribute v0 and v1
            v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
            v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
            // Now we have two equations and two unknowns and can solve one
            // equation for one variable and substitute into the other.  Or
            // if you're lazy like me, fire up Mathematica and save yourself
            // some handwriting.
            Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
            u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
            v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
            

            Here's an implementation in Flash that you can play with. :)

            // Compute vectors
                            v0 = C - A
                            v1 = B - A
                            v2 = P - A
                            // Compute dot products
                            dot00 = dot(v0, v0)
                            dot01 = dot(v0, v1)
                            dot02 = dot(v0, v2)
                            dot11 = dot(v1, v1)
                            dot12 = dot(v1, v2)
                            // Compute barycentric coordinates
                            invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                            u = (dot11 * dot02 - dot01 * dot12) * invDenom
                            v = (dot00 * dot12 - dot01 * dot02) * invDenom
                            // Check if point is in triangle
                            return (u > 0) && (v > 0) && (u + v < 1)
                            

            The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

            posted on 2008-08-25 15:57 zmj 閱讀(1970) 評論(9)  編輯 收藏 引用

            評論

            # re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

            No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

            # re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

            Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

            # re: Point in triangle test 2013-04-18 03:11 resume writing services

            Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

            # re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

            Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   

            久久97精品久久久久久久不卡| 亚洲精品国产字幕久久不卡| 91精品国产91热久久久久福利| 国内精品久久久久国产盗摄| 久久久久亚洲AV无码去区首| 一本一本久久a久久综合精品蜜桃| www.久久热| 亚洲欧美精品一区久久中文字幕 | 国产精品熟女福利久久AV| 亚洲乱码日产精品a级毛片久久| 久久综合88熟人妻| 久久国产精品二国产精品| 无码人妻精品一区二区三区久久| 国内精品久久久久久久coent| 久久无码中文字幕东京热| 品成人欧美大片久久国产欧美... 品成人欧美大片久久国产欧美 | 久久99国产精品久久| 久久人人爽人人爽人人片AV东京热| 久久99久久99小草精品免视看| 精品综合久久久久久97| 久久久久亚洲AV成人网| 久久精品国产第一区二区三区| 伊人久久国产免费观看视频| 久久久91精品国产一区二区三区| 久久久久国产精品嫩草影院| 久久国产精品二国产精品| 夜夜亚洲天天久久| 久久精品无码午夜福利理论片| 久久久久青草线蕉综合超碰| 婷婷久久综合九色综合绿巨人 | 无码超乳爆乳中文字幕久久| 无码人妻少妇久久中文字幕| 久久精品国产一区二区三区| 久久亚洲国产欧洲精品一| 国产亚洲欧美成人久久片| 久久久国产精品亚洲一区| 97精品伊人久久久大香线蕉| 一本色道久久综合亚洲精品| 三级三级久久三级久久| 久久亚洲日韩看片无码| 99久久香蕉国产线看观香|