青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2053) 評(píng)論(9)  編輯 收藏 引用

評(píng)論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復(fù)  更多評(píng)論   


只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            在线观看亚洲精品| 国产麻豆精品theporn| 在线观看欧美日韩| 久久综合伊人77777蜜臀| 久久尤物视频| 亚洲美女诱惑| 亚洲图片你懂的| 黑人极品videos精品欧美裸| 久久中文字幕导航| 欧美成人高清视频| 亚洲一区尤物| 久久精品视频免费播放| 亚洲激情视频在线播放| 日韩视频一区二区在线观看| 国产精品你懂的在线| 久久天堂成人| 欧美日韩第一页| 久久精品中文字幕免费mv| 蜜臀久久久99精品久久久久久| av成人免费| 欧美亚洲一区二区在线观看| 在线播放豆国产99亚洲| 亚洲国产日韩欧美在线动漫| 欧美日韩亚洲一区二区| 久久久久一区| 久久久久久久综合色一本| 欧美jizzhd精品欧美喷水 | 女女同性精品视频| 亚洲欧美日韩国产精品| 巨乳诱惑日韩免费av| 午夜精品久久久久久久蜜桃app| 久久久www免费人成黑人精品| 一区二区三区高清在线| 久久久久成人网| 亚洲免费一在线| 欧美成人午夜| 久久综合色播五月| 国产日韩精品视频一区| 亚洲人体1000| 亚洲第一级黄色片| 午夜激情综合网| 亚洲天天影视| 欧美成人免费全部观看天天性色| 欧美中文字幕视频| 欧美性猛交xxxx乱大交退制版| 美女网站久久| 国产中文一区二区| 亚洲欧美日韩综合aⅴ视频| 亚洲视频福利| 欧美精品性视频| 亚洲国产精品久久久久久女王| 国产亚洲高清视频| 亚洲欧美日韩国产| 性欧美1819sex性高清| 欧美日韩一区二区国产| 亚洲伦理网站| 一区二区成人精品 | 久久精品成人| 久久精品国产亚洲精品| 国产农村妇女精品一区二区| 中文国产成人精品久久一| 日韩午夜视频在线观看| 欧美福利在线观看| 亚洲第一页中文字幕| 亚洲激情午夜| 欧美日韩国产电影| 亚洲伦理在线观看| 亚洲一区综合| 国产精品乱码人人做人人爱| 宅男噜噜噜66国产日韩在线观看| av成人老司机| 国产精品综合色区在线观看| 亚洲一品av免费观看| 欧美在线观看www| 精品999在线播放| 免费视频久久| 99国产精品一区| 西瓜成人精品人成网站| 国产一区二区三区黄| 久久久999精品视频| 麻豆精品视频| 中文一区在线| 国产视频一区欧美| 玖玖玖免费嫩草在线影院一区| 欧美顶级少妇做爰| 在线综合欧美| 国内成人精品视频| 欧美精品 日韩| 亚洲免费一在线| 欧美本精品男人aⅴ天堂| 久久久91精品国产| 亚洲国产综合91精品麻豆| 亚洲一区二区三区视频| 国产视频精品va久久久久久| 另类激情亚洲| 亚洲少妇最新在线视频| 久色成人在线| 亚洲自拍三区| 亚洲国产女人aaa毛片在线| 欧美日韩在线看| 久久久噜噜噜| 亚洲神马久久| 欧美激情免费在线| 欧美一区高清| 一本一本久久a久久精品综合麻豆| 国产美女精品人人做人人爽| 欧美国产日韩一区| 午夜伦理片一区| 亚洲精品偷拍| 免费在线成人| 久久精品国产99国产精品澳门| 91久久精品美女| 国产一区二区久久久| 欧美日韩另类综合| 久久综合狠狠综合久久综合88| 亚洲亚洲精品在线观看| 最新亚洲电影| 欧美成人国产| 久久久久久久尹人综合网亚洲| 一区二区久久久久| 亚洲国产日韩欧美在线99 | 欧美高清视频一区二区三区在线观看| 亚洲婷婷综合久久一本伊一区| 亚洲激情在线观看| 欧美黑人国产人伦爽爽爽| 久久久人成影片一区二区三区观看| 一本色道**综合亚洲精品蜜桃冫| 影音先锋中文字幕一区| 国产综合色产在线精品| 国产一区二区三区的电影| 国产精品久久一区主播| 欧美日韩一区二区在线| 欧美日韩国产一区二区| 欧美国产日本| 久热爱精品视频线路一| 久久久精品日韩欧美| 欧美在线亚洲综合一区| 欧美影片第一页| 欧美在线一二三区| 久久精品一本| 久久夜色精品国产| 久久亚洲欧美| 免费一级欧美在线大片| 欧美成人一区二免费视频软件| 另类av一区二区| 欧美日本一区二区视频在线观看| 欧美精品一线| 欧美午夜a级限制福利片| 欧美特黄a级高清免费大片a级| 欧美色道久久88综合亚洲精品| 欧美日韩高清在线播放| 欧美日韩精品福利| 国产精品二区三区四区| 国产日产精品一区二区三区四区的观看方式 | 亚洲一区二区成人| 小黄鸭精品密入口导航| 欧美一级大片在线观看| 久久久久久亚洲精品杨幂换脸 | 国产夜色精品一区二区av| 国产亚洲欧美激情| 亚洲高清不卡av| 99视频精品全国免费| 亚洲欧美怡红院| 久久夜色精品国产欧美乱| 欧美激情第9页| 99国产精品久久久久久久久久| 亚洲欧美成人在线| 久久影院午夜片一区| 欧美日韩精品一区二区在线播放| 国产精品久久久久久久久久免费看 | 亚洲人成网站色ww在线| 亚洲一区二区三区免费观看 | 亚洲大胆人体视频| 9久草视频在线视频精品| 亚洲欧美日韩一区二区| 欧美jizzhd精品欧美喷水| 国产精品高潮视频| 黄色亚洲免费| 亚洲午夜久久久| 久久综合色8888| 亚洲视频axxx| 麻豆精品网站| 国产欧美大片| 99国产精品久久久久久久久久| 欧美亚洲色图校园春色| 欧美成人三级在线| 亚洲小说欧美另类社区| 欧美大片第1页| 国产亚洲欧美日韩日本| 99国产精品一区| 久久久久综合网| 99国产精品99久久久久久粉嫩| 久久视频一区二区| 国产噜噜噜噜噜久久久久久久久 | 在线日韩视频| 欧美在线视频在线播放完整版免费观看 | 亚洲美女电影在线| 久久午夜国产精品| 国产在线播精品第三| 亚洲愉拍自拍另类高清精品|