青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

S.l.e!ep.¢%

像打了激速一樣,以四倍的速度運轉(zhuǎn),開心的工作
簡單、開放、平等的公司文化;尊重個性、自由與個人價值;
posts - 1098, comments - 335, trackbacks - 0, articles - 1
  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

Linux遭遇Segmentation fault

Posted on 2012-01-13 01:16 S.l.e!ep.¢% 閱讀(6040) 評論(0)  編輯 收藏 引用 所屬分類: Unix
Program terminated with signal 11, Segmentation fault.
程序運行了8個小時之后,出現(xiàn)了上面的提示,并說有core.dump文件產(chǎn)生;
找到coredump文件core.2747,
#gdb -c core.2747
#bt
看不到堆棧,看不到任何代碼行的信息;開始以為是內(nèi)存已被踩到大亂,導(dǎo)致!
在網(wǎng)上百度了“Program terminated with signal 11, Segmentation fault.”,找到了

How to find and fix faults in Linux applications,

發(fā)現(xiàn)1. 事實上,并非如此;而是gdb使用錯誤,正確的使用是:
#gdb ./myprogram core.2747
#bt
現(xiàn)在堆棧信息出來了!

發(fā)現(xiàn)2. tail -f messages
Mar 16 13:59:52 localhost kernel: myprogram[2856]: segfault at 0000000000003a49 rip 000000000041f82c rsp 000000004be1bfb0 error 4
這次google“segfault? rip? rsp error 4”
找到第二篇好文:

《Posts tagged segfault》


了解了dmesg,可以找到一些信息;
了解了addr2line -e testseg 0000000000400470命令;

兩篇文章太好,全文粘貼如下:
How to find and fix faults in Linux applications

Abstract:

Everybody claims that it is easy to find and fix bugs in programs written under Linux. Unfortunately it is very hard to find documents explaining how to do that. In this article you will learn how to find and fix faults without first learning how an application internally works.

_________________ _________________ _________________

?

Introduction

From a user perspective there is hardly any difference between closed and open source systems as long as everything runs without faults and as expected. The situation changes however when things do not work and sooner or later every computer user will come to the point where things do not work.

In a closed source system you have usually only two option:

  • Report the fault and pay for the fix
  • Re-install and pray that it works now
Under Linux you have these options too but you can also start and investigate the cause of the problem. One of the main obstacles is usually that you are not the author of the failing program and that you have really no clue how it works internally.

Despite those obstacles there are a few things you can do without reading all the code and without learning how the program works internally. ?

Logs

The most obvious and simplest thing you can do is to look at file in /var/log/... What you find in those files and what the names of those logs files are is configurable. /var/log/messages is usually the file you want to look at. Bigger applications may have their own log directories (/var/log/httpd/ /var/log/exim ...).
Most distributions use syslog as system logger and its behavior is controlled via the configuration file /etc/syslog.conf The syntax of this file is documented in "man syslog.conf".

Logging works such that the designer of an program can add a syslog line to his code. This is much like a printf except that it writes to the system log. In this statement you specify a priority and a facility to classify the message:
#include <syslog.h>

void openlog(const char *ident, int option, int facility);
void syslog(int priority, const char *format, ...);
void closelog(void);

facility classifies the type of application sending the message.
priority determines the importance of the message. Possible
values in order of importance are:

LOG_EMERG
LOG_ALERT
LOG_CRIT
LOG_ERR
LOG_WARNING
LOG_NOTICE
LOG_INFO
LOG_DEBUG
With this C-interface any application written in C can write to the system log. Other languages do have similar APIs. Even shell scripts can write to the log with the command:
logger -p err "this text goes to /var/log/messages"
A standard syslog configuration (file /etc/syslog.conf) should have among others a line that looks like this:
# Log anything (except mail) of level info or higher.
# Don't log private authentication messages.
*.info;mail.none;authpriv.none /var/log/messages
The "*.info" will log anything with priority level LOG_INFO or higher. To see more information in /var/log/messages you can change this to "*.debug" and restart syslog (/etc/init.d/syslog restart).

The procedure to "debug" an application would therefore be as follows.
1) run tail -f /var/log/messages and then start the application which
fails from a different shell. Maybe you get already some hints
of what is going wrong.

2) If step 1) is not enough then edit /etc/syslog.conf and
change *.info to *.debug. Run "/etc/init.d/syslog restart" and
repeat step 1).
The problem with this method is that it depends entirely on what the developer has done in his code. If he/she did not add syslog statements at key points then you may not see anything at all. In other words you can find only problems where the developer did already foresee that this could go wrong. ?

strace

An application running under Linux can execute 3 type of function:
  1. Functions somewhere in its own code
  2. Library functions
  3. System calls
Library functions are similar to the application's own functions except that they are provided in a different package. System calls are those functions where your program talks to the kernel. Programs need to talk to the kernel if they need to access you computer's hardware. That is: write to the screen, read a file from disk, read keyboard input, send a message over the network etc...

These system calls can be intercepted and you can therefore follow the communication between application and the kernel.

A common problem is that an application does not work as expected because it can't find a configuration file or does not have sufficient permissions to write to a directory. These problems can easily be detected with strace. The relevant system call in this case would be called "open".

You use strace like this:
strace your_application
Here is an example:
# strace /usr/sbin/uucico
execve("/usr/sbin/uucico", ["/usr/sbin/uucico", "-S", "uucpssh", "-X", "11"],
[/* 36 vars */]) = 0
uname({sys="Linux", node="brain", ...}) = 0
brk(0) = 0x8085e34
mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40014000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=70865, ...}) = 0
mmap2(NULL, 70865, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40015000
close(3) = 0
open("/lib/libnsl.so.1", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\300;\0"..., 1024)
= 1024
fstat64(3, {st_mode=S_IFREG|0755, st_size=89509, ...}) = 0
mmap2(NULL, 84768, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x40027000
mprotect(0x40039000, 11040, PROT_NONE) = 0
mmap2(0x40039000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x11)
= 0x40039000
mmap2(0x4003a000, 6944, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =
0x4003a000
close(3) = 0
open("/lib/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0`X\1\000"..., 1024)
= 1024
fstat64(3, {st_mode=S_IFREG|0755, st_size=1465426, ...}) = 0
mmap2(NULL, 1230884, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x4003c000
mprotect(0x40163000, 22564, PROT_NONE) = 0
mmap2(0x40163000, 12288, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x126) = 0x40163000
mmap2(0x40166000, 10276, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40166000
close(3) = 0
munmap(0x40015000, 70865) = 0
brk(0) = 0x8085e34
brk(0x8086e34) = 0x8086e34
brk(0) = 0x8086e34
brk(0x8087000) = 0x8087000
open("/usr/conf/uucp/config", O_RDONLY) = -1 ENOENT (No such file or directory)
rt_sigaction(SIGINT, NULL, {SIG_DFL}, 8) = 0
rt_sigaction(SIGINT, {0x806a700, [],
SA_RESTORER|SA_INTERRUPT, 0x40064d58}, NULL, 8) = 0
rt_sigaction(SIGHUP, NULL, {SIG_DFL}, 8) = 0
rt_sigaction(SIGHUP, {0x806a700, [],
SA_RESTORER|SA_INTERRUPT, 0x40064d58}, NULL, 8) = 0
rt_sigaction(SIGQUIT, NULL, {SIG_DFL}, 8) = 0
rt_sigaction(SIGQUIT, {0x806a700, [],
SA_RESTORER|SA_INTERRUPT, 0x40064d58}, NULL, 8) = 0
rt_sigaction(SIGTERM, NULL, {SIG_DFL}, 8) = 0
rt_sigaction(SIGTERM, {0x806a700, [],
SA_RESTORER|SA_INTERRUPT, 0x40064d58}, NULL, 8) = 0
rt_sigaction(SIGPIPE, NULL, {SIG_DFL}, 8) = 0
rt_sigaction(SIGPIPE, {0x806a700, [],
SA_RESTORER|SA_INTERRUPT, 0x40064d58}, NULL, 8) = 0
getpid() = 1605
getrlimit(RLIMIT_NOFILE, {rlim_cur=1024, rlim_max=1024}) = 0
close(3) = -1 EBADF (Bad file descriptor)
close(4) = -1 EBADF (Bad file descriptor)
close(5) = -1 EBADF (Bad file descriptor)
close(6) = -1 EBADF (Bad file descriptor)
close(7) = -1 EBADF (Bad file descriptor)
close(8) = -1 EBADF (Bad file descriptor)
close(9) = -1 EBADF (Bad file descriptor)
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="brain", ...}) = 0
umask(0) = 022
socket(PF_UNIX, SOCK_STREAM, 0) = 3
connect(3, {sa_family=AF_UNIX,
path="/var/run/.nscd_socket"}, 110) = -1 ENOENT (No such file or directory)
close(3) = 0
open("/etc/nsswitch.conf", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=499, ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40015000
read(3, "# /etc/nsswitch.conf:\n# $Header:"..., 4096) = 499
read(3, "", 4096) = 0
close(3) = 0
munmap(0x40015000, 4096) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=70865, ...}) = 0
mmap2(NULL, 70865, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40015000
close(3) = 0
open("/lib/libnss_compat.so.2", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\300\25"..., 1024)
= 1024
fstat64(3, {st_mode=S_IFREG|0755, st_size=50250, ...}) = 0
mmap2(NULL, 46120, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x40169000
mprotect(0x40174000, 1064, PROT_NONE) = 0
mmap2(0x40174000, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0xa) = 0x40174000
close(3) = 0
munmap(0x40015000, 70865) = 0
uname({sys="Linux", node="brain", ...}) = 0
brk(0) = 0x8087000
brk(0x8088000) = 0x8088000
open("/etc/passwd", O_RDONLY) = 3
fcntl64(3, F_GETFD) = 0
fcntl64(3, F_SETFD, FD_CLOEXEC) = 0
fstat64(3, {st_mode=S_IFREG|0644, st_size=1864, ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40015000
_llseek(3, 0, [0], SEEK_CUR) = 0
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1864
close(3) = 0
munmap(0x40015000, 4096) = 0
getuid32() = 10
geteuid32() = 10
chdir("/var/spool/uucp") = 0
open("/usr/conf/uucp/sys", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/var/log/uucp/Debug", O_WRONLY|O_APPEND|O_CREAT|O_NOCTTY, 0600) = 3
fcntl64(3, F_GETFD) = 0
fcntl64(3, F_SETFD, FD_CLOEXEC) = 0
fcntl64(3, F_GETFL) = 0x401 (flags O_WRONLY|O_APPEND)
fstat64(3, {st_mode=S_IFREG|0600, st_size=296, ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40015000
_llseek(3, 0, [0], SEEK_CUR) = 0
open("/var/log/uucp/Log", O_WRONLY|O_APPEND|O_CREAT|O_NOCTTY, 0644) = 4
fcntl64(4, F_GETFD) = 0
fcntl64(4, F_SETFD, FD_CLOEXEC) = 0
fcntl64(4, F_GETFL) = 0x401 (flags O_WRONLY|O_APPEND)
What do we see here? Let's look e.g look at the following lines:
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
The program tries to read /etc/ld.so.preload and fails then it carries on and reads /etc/ld.so.cache. Here it succeeds and gets file descriptor 3 allocated. Now the failure to read /etc/ld.so.preload may not be a problem at all because the program may just try to read this and use it if possible. In other words it is not necessarily a problem if the program fails to read a file. It all depends on the design of the program. Let's look at all the open calls in the printout from strace:
open("/usr/conf/uucp/config", O_RDONLY)= -1 ENOENT (No such file or directory)
open("/etc/nsswitch.conf", O_RDONLY) = 3
open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib/libnss_compat.so.2", O_RDONLY) = 3
open("/etc/passwd", O_RDONLY) = 3
open("/usr/conf/uucp/sys", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/var/log/uucp/Debug", O_WRONLY|O_APPEND|O_CREAT|O_NOCTTY, 0600) = 3
open("/var/log/uucp/Log", O_WRONLY|O_APPEND|O_CREAT|O_NOCTTY, 0644) = 4
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
The program tries now to read /usr/conf/uucp/config. Oh! This is strange I have the config file in /etc/uucp/config ! ... and there is no line where the program attempts to open /etc/uucp/config. This is the fault. Obviously the program was configured at compile time for the wrong location of the configuration file.

As you see strace can be very useful. The problem is that it requires some experience with C-programming to really understand the full output of strace but normally you don't need to go that far. ?

gdb and core files

Sometimes it happens that a program just dies out of the blue with the message "Segmentation fault (core dumped)". This means that the program tries (due to a programming error) to write beyond the area of memory it has allocated. Especially in cases where the program writes just a few bytes to much it can be that only you see this problem and it happens only once in a while. This is because memory is allocated in chunks and sometimes there is accidently still room left for the extra bytes.

When this "Segmentation fault" happens a core file is left behind in the current working directory of the program (normally your home directory). This core file is just a dump of the memory at the time when the fault happened. Some shells provide facilities for controlling whether core files are written. Under bash, for example, the default behavior is not to write core files at all. In order to enable core files, you should use the command:
# ulimit -c unlimited

# ./lshref -i index.html,index.htm test.html
Segmentation fault (core dumped)
Exit 139
The core file can now be used with the gdb debugger to find out what was going wrong. Before you start gdb you can check that you are really looking at the right core file:
# file core.16897
core.16897: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style,
from 'lshref'
OK, lshref is the program that was crashing so let's load it into gdb. To invoke gdb for use with a core file, you must specify not only the core filename but also the name of the executable that goes along with that core file.
# gdb ./lshref core.23061 
GNU gdb Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
Core was generated by `./lshref -i index.html,index.htm test.html'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x40095e9d in strcpy () from /lib/libc.so.6
(gdb)
Now we know that the program is crashing while it tries to do a strcpy. The problem is that there might be many places in the code where strcpy is used.

In general there will now be 2 possibilities to find out where exactly in the code it goes wrong.
  1. Recompile the code with debug information (gcc option -g)
  2. Do stack trace in gdb
The problem in our case is that strcpy is a library function and even if we would re-compile absolutely all code (including libc) it would still tell us that it fails at a given line in the C library.

What we need is a stack trace which will tell us which function was called before strcpy was executed. The command to do such a stack trace in gdb is called "backtrace". It does however not work with only the core file. You have to re-run the command in gdb (reproduce the fault):
gdb ./lshref core.23061
GNU gdb Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
Core was generated by `./lshref -i index.html,index.htm test.html'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x40095e9d in strcpy () from /lib/libc.so.6
(gdb) backtrace
#0 0x40095e9d in strcpy () from /lib/libc.so.6
Cannot access memory at address 0xbfffeb38
(gdb) run ./lshref -i index.html,index.htm test.html
Starting program: /home/guido/lshref ./lshref -i index.html,index.htm test.html

Program received signal SIGSEGV, Segmentation fault.
0x40095e9d in strcpy () from /lib/libc.so.6
(gdb) backtrace
#0 0x40095e9d in strcpy () from /lib/libc.so.6
#1 0x08048d09 in string_to_list ()
#2 0x080494c8 in main ()
#3 0x400374ed in __libc_start_main () from /lib/libc.so.6
(gdb)
Now we can see that function main() called string_to_list() and from string_to_list strcpy() is called. We go to string_to_list() and look at the code:
char **string_to_list(char *string){
char *dat;
char *chptr;
char **array;
int i=0;

dat=(char *)malloc(strlen(string))+5000;
array=(char **)malloc(sizeof(char *)*51);
strcpy(dat,string);
This malloc line looks like a typo. Probably it should have been:
dat=(char *)malloc(strlen(string)+5000);

We change it, re-compile and ... hurra ... it works.

Let's look at a second example where the fault is not detected inside a library but in application code. In such a case the application can be compiled with the "gcc -g" flag and gdb will be able to show the exact line where the fault is detected.

Here is a simple example.
#include 
#include

int add(int *p,int a,int b)
{
*p=a+b;
return(*p);
}

int main(void)
{
int i;
int *p = 0; /* a null pointer */
printf("result is %d\n", add(p,2,3));
return(0);
}
We compile it:
gcc -Wall -g -o exmp exmp.c
Run it...
# ./exmp
Segmentation fault (core dumped)
Exit 139
gdb exmp core.5302
GNU gdb Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
Core was generated by `./exmp'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2

#0 0x08048334 in add (p=Cannot access memory at address 0xbfffe020
) at exmp.c:6
6 *p=a+b;
gdb tells us now that the fault was detected at line 6 and that pointer "p" pointed to memory which can not be accessed.

We look at the above code and it is of course a simple made-up example where p is a null pointer and you can not store any data in a null pointer. Easy to fix... ?

Conclusion



We have seen cases where you can really find the cause of a fault without knowing too much about the inner workings of a program.

I have on purpose excluded functional faults, e.g a button in a GUI is in the wrong position but it works. In those cases you will have to learn about the inner workings of the program. This will generally take much more time and there is no recipe on how to do that.

However the simple fault finding techniques shown here can still be be applied in many situations.

Happy troubleshooting! ?

原文地址http://linuxfocus.berlios.de/English/July2004/article343.shtml


Posts tagged segfault


testseg[24850]: segfault at 0000000000000000 rip 0000000000400470 rsp 0000007fbffff8a0 error 6
這種信息一般都是由內(nèi)存訪問越界造成的,不管是用戶態(tài)程序還是內(nèi)核態(tài)程序訪問越界都會出core, 并在系統(tǒng)日志里面輸出一條這樣的信息。這條信息的前面分別是訪問越界的程序名,進程ID號,訪問越界的地址以及當(dāng)時進程堆棧地址等信息,比較有用的信息是最后的error number. 在上面的信息中,error number是4 ,下面詳細介紹一下error number的信息:

在上面的例子中,error number是6, 轉(zhuǎn)成二進制就是110, 即bit2=1, bit1=1, bit0=0, 按照上面的解釋,我們可以得出這條信息是由于用戶態(tài)程序讀操作訪問越界造成的。
error number是由三個字位組成的,從高到底分別為bit2 bit1和bit0,所以它的取值范圍是0~7.

* bit2: 值為1表示是用戶態(tài)程序內(nèi)存訪問越界,值為0表示是內(nèi)核態(tài)程序內(nèi)存訪問越界
* bit1: 值為1表示是寫操作導(dǎo)致內(nèi)存訪問越界,值為0表示是讀操作導(dǎo)致內(nèi)存訪問越界
* bit0: 值為1表示沒有足夠的權(quán)限訪問非法地址的內(nèi)容,值為0表示訪問的非法地址根本沒有對應(yīng)的頁面,也就是無效地址

根據(jù)segfault信息調(diào)試定位程序bug:

#include<stdio.h>
int main()
{
int *p;
*p=12;
return 1;
}

1. 1. gcc testseg.c -o testseg -g,運行./testseg查看dmesg信息如下:
2.???? testseg[26063]: segfault at 0000000000000000 rip 0000000000400470 rsp 0000007fbffff8a0 error 6
3. 2. 運行addr2line -e testseg 0000000000400470,輸出如下:
4.???? /home/xxx/xxx/c/testseg.c:5
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲天堂第二页| 亚洲国产欧美一区二区三区同亚洲 | 老司机久久99久久精品播放免费 | 美国成人直播| 国产精品久久久久永久免费观看| 在线不卡a资源高清| 亚洲午夜在线观看| 欧美风情在线观看| 欧美一区亚洲一区| 欧美午夜精品久久久久免费视| 亚洲第一区在线观看| 久久精品91久久久久久再现| 一本久久精品一区二区| 免费成人高清在线视频| 一本色道久久综合亚洲精品婷婷| 久热re这里精品视频在线6| 性欧美长视频| 国产欧美日韩在线观看| 香蕉成人伊视频在线观看| 在线一区日本视频| 欧美视频在线免费| 亚洲天堂av电影| 99精品免费网| 欧美日韩网站| 99视频一区| 亚洲综合国产精品| 国产精品毛片a∨一区二区三区|国| 久久九九热免费视频| 欧美一区二区三区另类| 国产日产欧产精品推荐色| 亚洲承认在线| 欧美极品色图| 亚洲午夜女主播在线直播| 久久国产免费| 亚洲国产精品电影在线观看| 欧美成人有码| 国产情人节一区| 99精品国产高清一区二区| 一区在线播放视频| 亚洲高清三级视频| 欧美日韩在线另类| 欧美va天堂va视频va在线| 欧美aa国产视频| 亚洲深夜激情| 久久久噜噜噜久噜久久| 夜夜精品视频一区二区| 久久这里有精品15一区二区三区| 久久aⅴ乱码一区二区三区| 久久久久一区二区| 久久国产88| 国产精品日韩欧美一区二区| 久久九九国产精品怡红院| 欧美调教vk| 夜夜嗨av一区二区三区网站四季av| 在线播放一区| 久久亚洲精品伦理| 亚洲已满18点击进入久久| 久久狠狠亚洲综合| 欧美中文字幕久久| 国产手机视频一区二区| 亚洲美女免费视频| 一区二区三区精品国产| 一区二区冒白浆视频| 欧美一区二区在线视频| 午夜精品成人在线视频| 美日韩精品免费| 欧美国产日产韩国视频| 国产精品亚洲а∨天堂免在线| 99精品热视频| 欧美一级专区| 欧美激情一区二区三区全黄 | 欧美激情第五页| 亚洲人成网站999久久久综合| 亚洲欧美日韩一区在线| 日韩亚洲综合在线| 久久久久久婷| 亚洲国产欧美国产综合一区| av成人激情| 国产精品久久网| 久久se精品一区精品二区| 美女在线一区二区| 国产一区二区高清不卡| 在线视频欧美日韩精品| 欧美一区二区啪啪| 激情久久久久久| 欧美激情按摩| 亚洲电影自拍| 亚洲欧美国产77777| 欧美日韩国产999| 欧美成人一区二免费视频软件| 日韩小视频在线观看| 国产精品久久7| 日韩一区二区精品视频| 亚洲精品视频二区| 久久婷婷蜜乳一本欲蜜臀| 91久久中文| 一本久久a久久精品亚洲| 国产精品久久久久9999吃药| 久久狠狠婷婷| 夜夜爽www精品| 蜜臀av国产精品久久久久| 9久re热视频在线精品| 国产精品推荐精品| 欧美激情日韩| 久久国产精品电影| 99国内精品久久久久久久软件| 久久国产欧美日韩精品| 一区二区成人精品| 狠狠色综合网站久久久久久久| 久久九九热免费视频| 免费av成人在线| 亚洲摸下面视频| 亚洲另类一区二区| 一区二区三区亚洲| 国产精品美女久久久免费 | 午夜精品亚洲| 日韩午夜电影| 亚洲国产视频直播| 狼人天天伊人久久| 久久精品首页| 午夜精品在线视频| 一区二区三区|亚洲午夜| 亚洲国产成人porn| 国模私拍视频一区| 卡一卡二国产精品| 欧美一级久久| 亚洲一级黄色片| 在线性视频日韩欧美| 亚洲啪啪91| 国产精品成人在线| 欧美成人在线影院| 亚洲午夜精品在线| 亚洲精品中文字| 久久人人爽人人| 99国产精品久久久久久久成人热| 伊人色综合久久天天| 激情久久综合| 精品盗摄一区二区三区| 国产一区二区三区免费不卡| 国产欧美69| 国产日韩精品一区二区| 国产女精品视频网站免费 | 欧美二区在线播放| 猛男gaygay欧美视频| 欧美二区在线| 欧美精品久久久久久久久久| 欧美国产高清| 欧美日韩喷水| 国产精品日韩在线一区| 国产欧美一区二区三区国产幕精品| 国产精品视频免费| 国产一区视频网站| 在线观看欧美激情| 亚洲人成毛片在线播放| 99精品视频网| 亚洲图片欧美日产| 欧美在线看片| 欧美不卡在线| 日韩视频免费观看高清在线视频| 亚洲精品一区久久久久久| 亚洲视频免费| 亚洲欧美综合国产精品一区| 久久岛国电影| 欧美99在线视频观看| 欧美日韩精品福利| 国产欧美日韩综合| 亚洲第一精品久久忘忧草社区| 亚洲激情电影中文字幕| 黄色成人免费网站| 亚洲精品一区在线观看| 亚洲欧美日韩综合aⅴ视频| 久久久久久成人| 亚洲精品美女在线| 欧美一区二区三区免费观看| 嫩草国产精品入口| 国产精品你懂的| 亚洲激情图片小说视频| 亚洲欧美激情四射在线日 | 日韩亚洲欧美成人| 校园春色综合网| 亚洲第一黄网| 欧美一区二区高清在线观看| 免费在线视频一区| 国产精品自拍三区| 国产精品专区h在线观看| 亚洲国产精品久久久久秋霞蜜臀| 亚洲午夜91| 欧美成人情趣视频| 亚洲女同在线| 欧美区视频在线观看| 欧美日一区二区三区在线观看国产免| 国产欧美一区二区白浆黑人| 日韩亚洲视频在线| 免费观看成人鲁鲁鲁鲁鲁视频| 在线亚洲免费| 欧美日韩不卡在线| 亚洲国产精品va| 久久天堂精品| 亚洲福利视频免费观看| 午夜免费电影一区在线观看 |