• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            技術,瞎侃,健康,休閑……

            mahu@cppblog 人類的全部才能無非是時間和耐心的混合物
            posts - 11, comments - 13, trackbacks - 0, articles - 12
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            The 3n + 1 problem

            Posted on 2006-06-10 00:41 mahudu@cppblog 閱讀(1311) 評論(3)  編輯 收藏 引用 所屬分類: C/C++

            Background

            Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

            The Problem

            Consider the following algorithm:

            1.	input n

            2. print n

            3. if n = 1 then STOP

            4. if n is odd then tex2html_wrap_inline44

            5. else tex2html_wrap_inline46

            6. GOTO 2

            Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

            It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

            Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

            For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

            The Input

            The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

            You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

            You can assume that no opperation overflows a 32-bit integer.

            The Output

            For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

            Sample Input

            1 10
            100 200
            201 210
            900 1000

            Sample Output

            1 10 20
            100 200 125
            201 210 89
            900 1000 174

            Solution ?

            #include <iostream>

            using namespace std;

            ?

            int cycle(intm)

            {

            ?? int i = 1;

            ?? while (m != 1){

            ????? if(m%2)

            ??????? m = m*3 + 1;

            ????? else

            ??????? m /= 2;

            ????? i++;

            ?? }

            ?? return i;

            }??

            ?

            int main()

            {

            ?? int m,n,max,temp;

            ?? int mOriginal,nOriginal;

            ?? int i;

            ?

            ?? while (cin >> m >> n){

            ????? mOriginal = m;

            ????? nOriginal = n;

            ????? if (m > n){

            ??????? temp = m;

            ??????? m = n;

            ??????? n = temp;

            ????? }

            ?

            ????? max = cycle(m);

            ????? for (i = m+1; i <= n; i++){

            ??????? temp = cycle(i);

            ??????? if (temp > max){

            ?????????? max = temp;

            ??????? }

            ????? }?

            ????? cout << mOriginal << " " << nOriginal << " " << max << endl;

            ?? }

            ?? return 0;

            }

            Feedback

            # re: The 3n + 1 problem  回復  更多評論   

            2007-11-14 20:34 by 無意中看到
            你這個程序屬于很難通過的,基本上會碰到超時問題
            輸入: 1 1000000
            看你多牛的計算機3秒能搞出來
            這是典型的dp問題,暴力是不好用的

            # re: The 3n + 1 problem  回復  更多評論   

            2008-10-18 17:17 by TaiwanNo.1
            /*
            這個可以以0.7 sec完成
            */
            #include <stdio.h>

            int compute(int a)
            {
            int cnt = 1;
            while(a > 1)
            {
            a & 0x01 ? (a = (a<<1) + a + 1) : (a >>= 1);
            ++cnt;
            }
            return cnt;
            }


            int a, b, c;
            int i, j;
            int main(void)
            {

            while(0 < scanf("%d %d", &i, &j))
            {
            c = 0;
            i < j ? (a = i, b = j) : (a = j, b = i);
            while(a <= b)
            {
            int tmp = compute(a++);
            if(tmp > c)
            c = tmp;
            }
            printf("%d %d %d\n", i, j, c);
            }
            return 0;
            }

            # re: The 3n + 1 problem  回復  更多評論   

            2011-01-16 13:39 by UDHeart
            @TaiwanNo.1
            ...我就是這樣寫的,沒有這么快
            久久精品国产99久久无毒不卡| 国产高潮国产高潮久久久| 久久亚洲国产欧洲精品一| 久久精品亚洲日本波多野结衣| 无遮挡粉嫩小泬久久久久久久| 青草国产精品久久久久久| 1000部精品久久久久久久久| 久久精品国产精品亜洲毛片| 久久久久久精品免费免费自慰| 久久久亚洲欧洲日产国码二区| 热久久这里只有精品| 一极黄色视频久久网站| 久久精品夜夜夜夜夜久久| 精品国产综合区久久久久久 | 久久久久久久综合日本| 伊人久久国产免费观看视频| 2022年国产精品久久久久| 欧美日韩中文字幕久久久不卡 | 欧美伊人久久大香线蕉综合69 | 国产精品久久久久久久久久影院| 久久精品aⅴ无码中文字字幕重口| 久久久不卡国产精品一区二区| 久久亚洲欧美国产精品| 热RE99久久精品国产66热| 久久综合狠狠色综合伊人| 久久精品国产2020| 伊人久久大香线蕉无码麻豆| 精品乱码久久久久久夜夜嗨| 国产一区二区精品久久| 99蜜桃臀久久久欧美精品网站 | 精品久久一区二区三区| 亚洲国产欧美国产综合久久| 久久黄色视频| 国产69精品久久久久99| 天天爽天天爽天天片a久久网| 97久久超碰国产精品2021| 99蜜桃臀久久久欧美精品网站 | 久久99精品久久久久久| 亚洲va久久久噜噜噜久久狠狠| 99精品国产免费久久久久久下载| 亚洲伊人久久综合中文成人网|