• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            技術(shù),瞎侃,健康,休閑……

            mahu@cppblog 人類的全部才能無非是時(shí)間和耐心的混合物
            posts - 11, comments - 13, trackbacks - 0, articles - 12
              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            The 3n + 1 problem

            Posted on 2006-06-10 00:41 mahudu@cppblog 閱讀(1309) 評(píng)論(3)  編輯 收藏 引用 所屬分類: C/C++

            Background

            Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

            The Problem

            Consider the following algorithm:

            1.	input n

            2. print n

            3. if n = 1 then STOP

            4. if n is odd then tex2html_wrap_inline44

            5. else tex2html_wrap_inline46

            6. GOTO 2

            Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

            It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

            Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

            For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

            The Input

            The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

            You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

            You can assume that no opperation overflows a 32-bit integer.

            The Output

            For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

            Sample Input

            1 10
            100 200
            201 210
            900 1000

            Sample Output

            1 10 20
            100 200 125
            201 210 89
            900 1000 174

            Solution ?

            #include <iostream>

            using namespace std;

            ?

            int cycle(intm)

            {

            ?? int i = 1;

            ?? while (m != 1){

            ????? if(m%2)

            ??????? m = m*3 + 1;

            ????? else

            ??????? m /= 2;

            ????? i++;

            ?? }

            ?? return i;

            }??

            ?

            int main()

            {

            ?? int m,n,max,temp;

            ?? int mOriginal,nOriginal;

            ?? int i;

            ?

            ?? while (cin >> m >> n){

            ????? mOriginal = m;

            ????? nOriginal = n;

            ????? if (m > n){

            ??????? temp = m;

            ??????? m = n;

            ??????? n = temp;

            ????? }

            ?

            ????? max = cycle(m);

            ????? for (i = m+1; i <= n; i++){

            ??????? temp = cycle(i);

            ??????? if (temp > max){

            ?????????? max = temp;

            ??????? }

            ????? }?

            ????? cout << mOriginal << " " << nOriginal << " " << max << endl;

            ?? }

            ?? return 0;

            }

            Feedback

            # re: The 3n + 1 problem  回復(fù)  更多評(píng)論   

            2007-11-14 20:34 by 無意中看到
            你這個(gè)程序?qū)儆诤茈y通過的,基本上會(huì)碰到超時(shí)問題
            輸入: 1 1000000
            看你多牛的計(jì)算機(jī)3秒能搞出來
            這是典型的dp問題,暴力是不好用的

            # re: The 3n + 1 problem  回復(fù)  更多評(píng)論   

            2008-10-18 17:17 by TaiwanNo.1
            /*
            這個(gè)可以以0.7 sec完成
            */
            #include <stdio.h>

            int compute(int a)
            {
            int cnt = 1;
            while(a > 1)
            {
            a & 0x01 ? (a = (a<<1) + a + 1) : (a >>= 1);
            ++cnt;
            }
            return cnt;
            }


            int a, b, c;
            int i, j;
            int main(void)
            {

            while(0 < scanf("%d %d", &i, &j))
            {
            c = 0;
            i < j ? (a = i, b = j) : (a = j, b = i);
            while(a <= b)
            {
            int tmp = compute(a++);
            if(tmp > c)
            c = tmp;
            }
            printf("%d %d %d\n", i, j, c);
            }
            return 0;
            }

            # re: The 3n + 1 problem  回復(fù)  更多評(píng)論   

            2011-01-16 13:39 by UDHeart
            @TaiwanNo.1
            ...我就是這樣寫的,沒有這么快
            97久久国产露脸精品国产| 99麻豆久久久国产精品免费 | 观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 久久精品国内一区二区三区| 99999久久久久久亚洲| 精品国产青草久久久久福利| 亚洲国产成人久久精品99| 久久永久免费人妻精品下载| 亚洲精品国产成人99久久| 开心久久婷婷综合中文字幕| 久久久久人妻一区精品色| 久久久噜噜噜久久| 精品久久久久久中文字幕人妻最新| A级毛片无码久久精品免费| 色播久久人人爽人人爽人人片AV| 99精品久久精品| 久久人人爽人人爽人人片av麻烦 | 久久久受www免费人成| 99久久国产热无码精品免费| 免费精品久久久久久中文字幕| 无码人妻久久一区二区三区| 理论片午午伦夜理片久久| 久久亚洲精品中文字幕三区| 午夜不卡久久精品无码免费| 亚洲人成网站999久久久综合 | 欧美午夜精品久久久久久浪潮| 99久久国产热无码精品免费| 亚洲伊人久久精品影院| 久久久久久曰本AV免费免费| 久久久综合香蕉尹人综合网| 久久91精品综合国产首页| 狠狠88综合久久久久综合网| 狼狼综合久久久久综合网| 国产精品99久久久精品无码| 久久只有这精品99| 久久笫一福利免费导航| 亚洲午夜精品久久久久久浪潮| 欧洲国产伦久久久久久久| 久久这里只有精品视频99| 亚洲精品第一综合99久久| 色妞色综合久久夜夜|