• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            技術,瞎侃,健康,休閑……

            mahu@cppblog 人類的全部才能無非是時間和耐心的混合物
            posts - 11, comments - 13, trackbacks - 0, articles - 12
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            The 3n + 1 problem

            Posted on 2006-06-10 00:41 mahudu@cppblog 閱讀(1311) 評論(3)  編輯 收藏 引用 所屬分類: C/C++

            Background

            Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

            The Problem

            Consider the following algorithm:

            1.	input n

            2. print n

            3. if n = 1 then STOP

            4. if n is odd then tex2html_wrap_inline44

            5. else tex2html_wrap_inline46

            6. GOTO 2

            Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

            It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

            Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

            For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

            The Input

            The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

            You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

            You can assume that no opperation overflows a 32-bit integer.

            The Output

            For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

            Sample Input

            1 10
            100 200
            201 210
            900 1000

            Sample Output

            1 10 20
            100 200 125
            201 210 89
            900 1000 174

            Solution ?

            #include <iostream>

            using namespace std;

            ?

            int cycle(intm)

            {

            ?? int i = 1;

            ?? while (m != 1){

            ????? if(m%2)

            ??????? m = m*3 + 1;

            ????? else

            ??????? m /= 2;

            ????? i++;

            ?? }

            ?? return i;

            }??

            ?

            int main()

            {

            ?? int m,n,max,temp;

            ?? int mOriginal,nOriginal;

            ?? int i;

            ?

            ?? while (cin >> m >> n){

            ????? mOriginal = m;

            ????? nOriginal = n;

            ????? if (m > n){

            ??????? temp = m;

            ??????? m = n;

            ??????? n = temp;

            ????? }

            ?

            ????? max = cycle(m);

            ????? for (i = m+1; i <= n; i++){

            ??????? temp = cycle(i);

            ??????? if (temp > max){

            ?????????? max = temp;

            ??????? }

            ????? }?

            ????? cout << mOriginal << " " << nOriginal << " " << max << endl;

            ?? }

            ?? return 0;

            }

            Feedback

            # re: The 3n + 1 problem  回復  更多評論   

            2007-11-14 20:34 by 無意中看到
            你這個程序屬于很難通過的,基本上會碰到超時問題
            輸入: 1 1000000
            看你多牛的計算機3秒能搞出來
            這是典型的dp問題,暴力是不好用的

            # re: The 3n + 1 problem  回復  更多評論   

            2008-10-18 17:17 by TaiwanNo.1
            /*
            這個可以以0.7 sec完成
            */
            #include <stdio.h>

            int compute(int a)
            {
            int cnt = 1;
            while(a > 1)
            {
            a & 0x01 ? (a = (a<<1) + a + 1) : (a >>= 1);
            ++cnt;
            }
            return cnt;
            }


            int a, b, c;
            int i, j;
            int main(void)
            {

            while(0 < scanf("%d %d", &i, &j))
            {
            c = 0;
            i < j ? (a = i, b = j) : (a = j, b = i);
            while(a <= b)
            {
            int tmp = compute(a++);
            if(tmp > c)
            c = tmp;
            }
            printf("%d %d %d\n", i, j, c);
            }
            return 0;
            }

            # re: The 3n + 1 problem  回復  更多評論   

            2011-01-16 13:39 by UDHeart
            @TaiwanNo.1
            ...我就是這樣寫的,沒有這么快
            久久国产免费观看精品3| 伊人久久一区二区三区无码| 久久精品国产亚洲AV无码偷窥| 亚洲人成无码网站久久99热国产| 欧美伊人久久大香线蕉综合| 久久精品无码专区免费青青| 国产精品欧美亚洲韩国日本久久| 日产久久强奸免费的看| 久久九九精品99国产精品| 国产精品成人99久久久久| 无码人妻久久一区二区三区蜜桃| 97热久久免费频精品99| 久久频这里精品99香蕉久| 国产亚洲婷婷香蕉久久精品| 一本色道久久综合| 热久久国产精品| 欧美一区二区三区久久综| 国产国产成人久久精品| 人妻少妇久久中文字幕| 久久久人妻精品无码一区 | 欧美精品丝袜久久久中文字幕 | 久久亚洲中文字幕精品一区| 思思久久好好热精品国产| 久久精品国产福利国产秒| 久久国产免费直播| 亚洲午夜无码久久久久| 精品无码久久久久久国产| 精品人妻伦一二三区久久| 久久综合国产乱子伦精品免费| 日韩va亚洲va欧美va久久| 岛国搬运www久久| 久久精品国产半推半就| 999久久久免费精品国产| 亚洲午夜久久久影院伊人| 热久久最新网站获取| 色8激情欧美成人久久综合电| 久久久WWW成人免费精品| 99久久亚洲综合精品成人| 久久天堂电影网| 国产精品免费久久久久影院| 国产综合免费精品久久久|