• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            技術,瞎侃,健康,休閑……

            mahu@cppblog 人類的全部才能無非是時間和耐心的混合物
            posts - 11, comments - 13, trackbacks - 0, articles - 12
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            The 3n + 1 problem

            Posted on 2006-06-10 00:41 mahudu@cppblog 閱讀(1309) 評論(3)  編輯 收藏 引用 所屬分類: C/C++

            Background

            Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

            The Problem

            Consider the following algorithm:

            1.	input n

            2. print n

            3. if n = 1 then STOP

            4. if n is odd then tex2html_wrap_inline44

            5. else tex2html_wrap_inline46

            6. GOTO 2

            Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

            It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

            Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

            For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

            The Input

            The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

            You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

            You can assume that no opperation overflows a 32-bit integer.

            The Output

            For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

            Sample Input

            1 10
            100 200
            201 210
            900 1000

            Sample Output

            1 10 20
            100 200 125
            201 210 89
            900 1000 174

            Solution ?

            #include <iostream>

            using namespace std;

            ?

            int cycle(intm)

            {

            ?? int i = 1;

            ?? while (m != 1){

            ????? if(m%2)

            ??????? m = m*3 + 1;

            ????? else

            ??????? m /= 2;

            ????? i++;

            ?? }

            ?? return i;

            }??

            ?

            int main()

            {

            ?? int m,n,max,temp;

            ?? int mOriginal,nOriginal;

            ?? int i;

            ?

            ?? while (cin >> m >> n){

            ????? mOriginal = m;

            ????? nOriginal = n;

            ????? if (m > n){

            ??????? temp = m;

            ??????? m = n;

            ??????? n = temp;

            ????? }

            ?

            ????? max = cycle(m);

            ????? for (i = m+1; i <= n; i++){

            ??????? temp = cycle(i);

            ??????? if (temp > max){

            ?????????? max = temp;

            ??????? }

            ????? }?

            ????? cout << mOriginal << " " << nOriginal << " " << max << endl;

            ?? }

            ?? return 0;

            }

            Feedback

            # re: The 3n + 1 problem  回復  更多評論   

            2007-11-14 20:34 by 無意中看到
            你這個程序屬于很難通過的,基本上會碰到超時問題
            輸入: 1 1000000
            看你多牛的計算機3秒能搞出來
            這是典型的dp問題,暴力是不好用的

            # re: The 3n + 1 problem  回復  更多評論   

            2008-10-18 17:17 by TaiwanNo.1
            /*
            這個可以以0.7 sec完成
            */
            #include <stdio.h>

            int compute(int a)
            {
            int cnt = 1;
            while(a > 1)
            {
            a & 0x01 ? (a = (a<<1) + a + 1) : (a >>= 1);
            ++cnt;
            }
            return cnt;
            }


            int a, b, c;
            int i, j;
            int main(void)
            {

            while(0 < scanf("%d %d", &i, &j))
            {
            c = 0;
            i < j ? (a = i, b = j) : (a = j, b = i);
            while(a <= b)
            {
            int tmp = compute(a++);
            if(tmp > c)
            c = tmp;
            }
            printf("%d %d %d\n", i, j, c);
            }
            return 0;
            }

            # re: The 3n + 1 problem  回復  更多評論   

            2011-01-16 13:39 by UDHeart
            @TaiwanNo.1
            ...我就是這樣寫的,沒有這么快
            久久青青草原综合伊人| 99久久精品国产毛片| 色播久久人人爽人人爽人人片aV| 伊人丁香狠狠色综合久久| 国产精品永久久久久久久久久| 日日狠狠久久偷偷色综合0| 7777久久久国产精品消防器材| 欧美一区二区三区久久综合| 99热都是精品久久久久久| 久久国产劲爆AV内射—百度| 青青草原综合久久大伊人精品| 久久露脸国产精品| 久久91精品久久91综合| 人妻无码精品久久亚瑟影视| 热久久这里只有精品| 99久久99久久精品国产片果冻| 99久久精品国产综合一区| 久久精品人人做人人妻人人玩| 精品免费久久久久国产一区| 久久亚洲国产成人精品性色| 伊人久久大香线蕉精品不卡| 久久美女人爽女人爽| 久久久久亚洲av无码专区导航 | 91精品婷婷国产综合久久| 久久久亚洲欧洲日产国码是AV | 久久久久免费视频| 久久电影网2021| 久久婷婷五月综合97色一本一本| 久久久高清免费视频| 久久天天日天天操综合伊人av| 色综合合久久天天综合绕视看| www性久久久com| 99久久精品国产免看国产一区| 亚洲精品乱码久久久久久久久久久久 | 久久精品国产亚洲av麻豆小说| 久久精品国产清自在天天线| 精品久久久久久久久免费影院| 午夜肉伦伦影院久久精品免费看国产一区二区三区| 久久国产免费观看精品| 嫩草影院久久99| 人妻无码久久精品|