• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            天行健 君子當自強而不息

            紋理映射基礎(7)

            紋理階段混合狀態用于指定當前紋理顏色值和alpha值的混合方法。

             

            紋理階段混合狀態設置

            紋理階段混合狀態由IDirect3DDevice9::SetTextureStageState()設置,該函數的聲明如下:

            Sets the state value for the currently assigned texture.

            HRESULT SetTextureStageState(
            DWORD Stage,
            D3DTEXTURESTAGESTATETYPE Type,
            DWORD Value
            );

            Parameters

            Stage
            [in] Stage identifier of the texture for which the state value is set. Stage identifiers are zero-based. Devices can have up to eight set textures, so the maximum value allowed for Stage is 7.
            Type
            [in] Texture state to set. This parameter can be any member of the D3DTEXTURESTAGESTATETYPE enumerated type.
            Value
            [in] State value to set. The meaning of this value is determined by the Type parameter.

            Return Values

            If the method succeeds, the return value is D3D_OK. If the method fails, the return value can be D3DERR_INVALIDCALL.

            枚舉類型D3DTEXTURESTAGESTATETYPE的定義為:

            Texture stage states define multi-blender texture operations. Some sampler states set up vertex processing, and some set up pixel processing. Texture stage states can be saved and restored using stateblocks (see State Blocks Save and Restore State (Direct3D 9)).

            typedef enum D3DTEXTURESTAGESTATETYPE
            {
            D3DTSS_COLOROP = 1,
            D3DTSS_COLORARG1 = 2,
            D3DTSS_COLORARG2 = 3,
            D3DTSS_ALPHAOP = 4,
            D3DTSS_ALPHAARG1 = 5,
            D3DTSS_ALPHAARG2 = 6,
            D3DTSS_BUMPENVMAT00 = 7,
            D3DTSS_BUMPENVMAT01 = 8,
            D3DTSS_BUMPENVMAT10 = 9,
            D3DTSS_BUMPENVMAT11 = 10,
            D3DTSS_TEXCOORDINDEX = 11,
            D3DTSS_BUMPENVLSCALE = 22,
            D3DTSS_BUMPENVLOFFSET = 23,
            D3DTSS_TEXTURETRANSFORMFLAGS = 24,
            D3DTSS_COLORARG0 = 26,
            D3DTSS_ALPHAARG0 = 27,
            D3DTSS_RESULTARG = 28,
            D3DTSS_CONSTANT = 32,
            D3DTSS_FORCE_DWORD = 0x7fffffff,
            } D3DTEXTURESTAGESTATETYPE, *LPD3DTEXTURESTAGESTATETYPE;

            Constants

            D3DTSS_COLOROP
            Texture-stage state is a texture color blending operation identified by one member of the D3DTEXTUREOP enumerated type. The default value for the first texture stage (stage 0) is D3DTOP_MODULATE; for all other stages the default is D3DTOP_DISABLE.
            D3DTSS_COLORARG1
            Texture-stage state is the first color argument for the stage, identified by one of the D3DTA. The default argument is D3DTA_TEXTURE.

            Specify D3DTA_TEMP to select a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default value for the register is (0.0, 0.0, 0.0, 0.0).

            D3DTSS_COLORARG2
            Texture-stage state is the second color argument for the stage, identified by D3DTA. The default argument is D3DTA_CURRENT. Specify D3DTA_TEMP to select a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default value for the register is (0.0, 0.0, 0.0, 0.0)
            D3DTSS_ALPHAOP
            Texture-stage state is a texture alpha blending operation identified by one member of the D3DTEXTUREOP enumerated type. The default value for the first texture stage (stage 0) is D3DTOP_SELECTARG1, and for all other stages the default is D3DTOP_DISABLE.
            D3DTSS_ALPHAARG1
            Texture-stage state is the first alpha argument for the stage, identified by by D3DTA. The default argument is D3DTA_TEXTURE. If no texture is set for this stage, the default argument is D3DTA_DIFFUSE. Specify D3DTA_TEMP to select a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default value for the register is (0.0, 0.0, 0.0, 0.0).
            D3DTSS_ALPHAARG2
            Texture-stage state is the second alpha argument for the stage, identified by by D3DTA. The default argument is D3DTA_CURRENT. Specify D3DTA_TEMP to select a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default value for the register is (0.0, 0.0, 0.0, 0.0).
            D3DTSS_BUMPENVMAT00
            Texture-stage state is a floating-point value for the [0][0] coefficient in a bump-mapping matrix. The default value is 0.0.
            D3DTSS_BUMPENVMAT01
            Texture-stage state is a floating-point value for the [0][1] coefficient in a bump-mapping matrix. The default value is 0.0.
            D3DTSS_BUMPENVMAT10
            Texture-stage state is a floating-point value for the [1][0] coefficient in a bump-mapping matrix. The default value is 0.0.
            D3DTSS_BUMPENVMAT11
            Texture-stage state is a floating-point value for the [1][1] coefficient in a bump-mapping matrix. The default value is 0.0.
            D3DTSS_TEXCOORDINDEX
            Index of the texture coordinate set to use with this texture stage. You can specify up to eight sets of texture coordinates per vertex. If a vertex does not include a set of texture coordinates at the specified index, the system defaults to the u and v coordinates (0,0).

            When rendering using vertex shaders, each stage's texture coordinate index must be set to its default value. The default index for each stage is equal to the stage index. Set this state to the zero-based index of the coordinate set for each vertex that this texture stage uses.

            Additionally, applications can include, as logical OR with the index being set, one of the constants to request that Direct3D automatically generate the input texture coordinates for a texture transformation. For a list of all the constants, see D3DTSS_TCI.

            With the exception of D3DTSS_TCI_PASSTHRU, which resolves to zero, if any of the following values is included with the index being set, the system uses the index strictly to determine texture wrapping mode. These flags are most useful when performing environment mapping.

            D3DTSS_BUMPENVLSCALE
            Floating-point scale value for bump-map luminance. The default value is 0.0.
            D3DTSS_BUMPENVLOFFSET
            Floating-point offset value for bump-map luminance. The default value is 0.0.
            D3DTSS_TEXTURETRANSFORMFLAGS
            Member of the D3DTEXTURETRANSFORMFLAGS enumerated type that controls the transformation of texture coordinates for this texture stage. The default value is D3DTTFF_DISABLE.
            D3DTSS_COLORARG0
            Settings for the third color operand for triadic operations (multiply, add, and linearly interpolate), identified by D3DTA. This setting is supported if the D3DTEXOPCAPS_MULTIPLYADD or D3DTEXOPCAPS_LERP device capabilities are present. The default argument is D3DTA_CURRENT. Specify D3DTA_TEMP to select a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default value for the register is (0.0, 0.0, 0.0, 0.0).
            D3DTSS_ALPHAARG0
            Settings for the alpha channel selector operand for triadic operations (multiply, add, and linearly interpolate), identified by D3DTA. This setting is supported if the D3DTEXOPCAPS_MULTIPLYADD or D3DTEXOPCAPS_LERP device capabilities are present. The default argument is D3DTA_CURRENT. Specify D3DTA_TEMP to select a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default argument is (0.0, 0.0, 0.0, 0.0).
            D3DTSS_RESULTARG
            Setting to select destination register for the result of this stage, identified by D3DTA. This value can be set to D3DTA_CURRENT (the default value) or to D3DTA_TEMP, which is a single temporary register that can be read into subsequent stages as an input argument. The final color passed to the fog blender and frame buffer is taken from D3DTA_CURRENT, so the last active texture stage state must be set to write to current. This setting is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present.
            D3DTSS_CONSTANT
            Per-stage constant color. To see if a device supports a per-stage constant color, see the D3DPMISCCAPS_PERSTAGECONSTANT constant in D3DPMISCCAPS. D3DTSS_CONSTANT is used by D3DTA_CONSTANT. See D3DTA.
            D3DTSS_FORCE_DWORD
            Forces this enumeration to compile to 32 bits in size. Without this value, some compilers would allow this enumeration to compile to a size other than 32 bits. This value is not used.

            Remarks

            Members of this enumerated type are used with the IDirect3DDevice9::GetTextureStageState and IDirect3DDevice9::SetTextureStageState methods to retrieve and set texture state values.

            The valid range of values for the D3DTSS_BUMPENVMAT00, D3DTSS_BUMPENVMAT01, D3DTSS_BUMPENVMAT10, and D3DTSS_BUMPENVMAT11 bump-mapping matrix coefficients is greater than or equal to -8.0 and less than 8.0. This range, expressed in mathematical notation is (-8.0,8.0).

            D3DTSS_COLOROP:指定紋理顏色的混合方法,Value值屬于D3DTEXTUREOP枚舉類型。Value等于D3DTOP_DISABLE,表示禁用當前紋理層顏色輸出;Value等于D3DTOP_SELECTARG1或者D3DTOP_SELECTARG2,表示將顏色混合的第一個或第二個參數顏色輸出;Value等于D3DTOP_MODULATE,表示將顏色混合的第一個和第二個參數顏色相乘輸出。紋理層的顏色混合方法多種多樣。

            D3DTSS_BUMPENVMAT00、D3DTSS_BUMPENVMAT01、D3DTSS_BUMPENVMAT10、D3DTSS_BUMPENVMAT11:在繪制具有凹凸花紋表面的物體時使用,表示將要設置的凹凸映射矩陣的m[0][0]、m[0][1]、m[1][0]、m[1][1]參數值。

            D3DTA

            Texture argument constants are used as values for the following members of the D3DTEXTURESTAGESTATETYPE enumerated type:

            • D3DTSS_ALPHAARG0
            • D3DTSS_ALPHAARG1
            • D3DTSS_ALPHAARG2
            • D3DTSS_COLORARG0
            • D3DTSS_COLORARG1
            • D3DTSS_COLORARG2
            • D3DTSS_RESULTARG

            Set and retrieve texture arguments by calling the IDirect3DDevice9::SetTextureStageState and IDirect3DDevice9::GetTextureStageState methods.

            Argument flags

            You can combine an argument flag with a modifier, but two argument flags cannot be combined.

            #define Description
            D3DTA_CONSTANT Select a constant from a texture stage. The default value is 0xffffffff.
            D3DTA_CURRENT The texture argument is the result of the previous blending stage. In the first texture stage (stage 0), this argument is equivalent to D3DTA_DIFFUSE. If the previous blending stage uses a bump-map texture (the D3DTOP_BUMPENVMAP operation), the system chooses the texture from the stage before the bump-map texture. If s represents the current texture stage and s - 1 contains a bump-map texture, this argument becomes the result output by texture stage s - 2. Permissions are read/write.
            D3DTA_DIFFUSE The texture argument is the diffuse color interpolated from vertex components during Gouraud shading. If the vertex does not contain a diffuse color, the default color is 0xffffffff. Permissions are read-only.
            D3DTA_SELECTMASK Mask value for all arguments; not used when setting texture arguments.
            D3DTA_SPECULAR The texture argument is the specular color interpolated from vertex components during Gouraud shading. If the vertex does not contain a specular color, the default color is 0xffffffff. Permissions are read-only.
            D3DTA_TEMP The texture argument is a temporary register color for read or write. D3DTA_TEMP is supported if the D3DPMISCCAPS_TSSARGTEMP device capability is present. The default value for the register is (0.0, 0.0, 0.0, 0.0). Permissions are read/write.
            D3DTA_TEXTURE The texture argument is the texture color for this texture stage. Permissions are read-only.
            D3DTA_TFACTOR The texture argument is the texture factor set in a previous call to the IDirect3DDevice9::SetRenderState with the D3DRS_TEXTUREFACTOR render-state value. Permissions are read-only.

            Modifier flags

            An argument flag may be combined with one of the following modifier flags.

            #define Description
            D3DTA_ALPHAREPLICATE Replicate the alpha information to all color channels before the operation completes. This is a read modifier.
            D3DTA_COMPLEMENT Take the complement of the argument x, (1.0 - x). This is a read modifier.

             

            紋理階段混合狀態示例程序

            示例程序演示了紋理階段混合狀態的使用極其效果,紋理階段混合狀態在紋理中具有非常重要的作用,示例代碼中設置紋理階段混合狀態的代碼如下:

            g_device->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
            g_device->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
            g_device->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);

            上面的代碼指定將紋理顏色和頂點漫反射顏色相乘輸出到第一個紋理層,由于示例程序指定了只使用單層紋理貼圖,因此,第一個紋理層的顏色輸出就是最終顏色輸出,其中頂點漫反射顏色值是由漫反射光照計算得到的。

            運行效果圖:


             

            如果將設置紋理階段混合狀態的代碼改為如下,則采用紋理顏色作為最終的顏色結果,此時光照效果被取消:

            g_device->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
            g_device->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
            g_device->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);

            運行效果圖:

             

            如果將設置紋理階段混合狀態的代碼改為如下,則采用頂點光照漫反射顏色作為最終的顏色結果,此時紋理貼圖效果被取消:

            g_device->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG2);
            g_device->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
            g_device->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);

            運行效果圖:

             

            源程序:

             #include <d3dx9.h>

            #pragma warning(disable : 
            4127)

            #define CLASS_NAME    "GameApp"

            #define release_com(p)    do { if(p) { (p)->Release(); (p) = NULL; } } while(0)

            IDirect3D9
            *                g_d3d;
            IDirect3DDevice9
            *        g_device;
            IDirect3DVertexBuffer9
            * g_vertex_buffer;
            IDirect3DTexture9
            *        g_texture;

            struct sCustomVertex
            {
                D3DXVECTOR3    position;
                D3DXVECTOR3    normal;
                
            float        u, v;
            };

            #define D3DFVF_CUSTOM_VERTEX (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1) 

            void setup_matrices()
            {
                
            // build world matrix
                
                D3DXMATRIX mat_world;
                D3DXMatrixIdentity(
            &mat_world);
                g_device
            ->SetTransform(D3DTS_WORLD, &mat_world);

                
            // setup view matrix

                D3DXVECTOR3 eye(
            0.0f3.0f-5.0f);
                D3DXVECTOR3 at(
            0.0f0.0f0.0f);
                D3DXVECTOR3 up(
            0.0f1.0f0.0f);

                D3DXMATRIX mat_view;
                D3DXMatrixLookAtLH(
            &mat_view, &eye, &at, &up);
                g_device
            ->SetTransform(D3DTS_VIEW, &mat_view);

                
            // setup projection matrix

                D3DXMATRIX mat_proj;
                D3DXMatrixPerspectiveFovLH(
            &mat_proj, D3DX_PI/41.0f1.0f100.0f);
                g_device
            ->SetTransform(D3DTS_PROJECTION, &mat_proj);
            }

            void setup_material_light()
            {
                
            // setup material

                D3DMATERIAL9 material;
                ZeroMemory(
            &material, sizeof(material));

                material.Diffuse.r 
            = material.Ambient.r = 1.0f;
                material.Diffuse.g 
            = material.Ambient.g = 1.0f;
                material.Diffuse.b 
            = material.Ambient.b = 1.0f;
                material.Diffuse.a 
            = material.Ambient.a = 0.5f;

                g_device
            ->SetMaterial(&material);

                
            // setup light

                D3DLIGHT9 light;
                ZeroMemory(
            &light, sizeof(light));

                light.Type        
            = D3DLIGHT_DIRECTIONAL;
                light.Diffuse.r 
            = 1.0f;
                light.Diffuse.g 
            = 1.0f;
                light.Diffuse.b 
            = 1.0f;
                light.Diffuse.a 
            = 1.0f;
                light.Range        
            = 1000.0f;

                
            float time = timeGetTime() / 350.0f;
                light.Direction
            = D3DXVECTOR3(cosf(time), 1.0f, sinf(time));
                
                g_device
            ->SetLight(0&light);
                g_device
            ->LightEnable(0, TRUE);

                g_device
            ->SetRenderState(D3DRS_AMBIENT, 0x00FF5050);    
            }

            bool init_graphics()
            {    
                
            if(FAILED(D3DXCreateTextureFromFile(g_device, "texture.jpg"&g_texture)))
                {
                    MessageBox(NULL, 
            "Create texture failed!""ERROR", MB_OK);
                    
            return false;
                }

                g_device
            ->CreateVertexBuffer(50 * 2 * sizeof(sCustomVertex), 0, D3DFVF_CUSTOM_VERTEX, D3DPOOL_DEFAULT, 
                                             
            &g_vertex_buffer, NULL);

                sCustomVertex
            * vertices;

                g_vertex_buffer
            ->Lock(00, (void**)&vertices, 0);

                
            for(int i = 0; i < 50; i++)
                {
                    
            float theta = (2 * D3DX_PI * i) / (50 - 1);

                    vertices[
            2 * i + 0].position = D3DXVECTOR3(sin(theta), -1.0f, cos(theta));
                    vertices[
            2 * i + 0].normal   = D3DXVECTOR3(sin(theta),  0.0f, cos(theta));
                    vertices[
            2 * i + 0].u         = ((float)i) / (50-1);
                    vertices[
            2 * i + 0].v         = 1.0f;

                    vertices[
            2 * i + 1].position = D3DXVECTOR3(sin(theta),  1.0f, cos(theta));
                    vertices[
            2 * i + 1].normal   = D3DXVECTOR3(sin(theta),  0.0f, cos(theta));
                    vertices[
            2 * i + 1].u         = ((float)i) / (50-1);
                    vertices[
            2 * i + 1].v         = 0.0f;
                }
                
                g_vertex_buffer
            ->Unlock();

                
            return true;
            }

            bool init_d3d(HWND hwnd)
            {
                g_d3d 
            = Direct3DCreate9(D3D_SDK_VERSION);

                
            if(g_d3d == NULL)
                    
            return false;

                D3DPRESENT_PARAMETERS d3dpp;
                ZeroMemory(
            &d3dpp, sizeof(d3dpp));

                d3dpp.Windowed                 
            = TRUE;
                d3dpp.SwapEffect             
            = D3DSWAPEFFECT_DISCARD;
                d3dpp.BackBufferFormat         
            = D3DFMT_UNKNOWN;
                d3dpp.EnableAutoDepthStencil 
            = TRUE;
                d3dpp.AutoDepthStencilFormat 
            = D3DFMT_D16;

                
            if(FAILED(g_d3d->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hwnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
                                              
            &d3dpp, &g_device)))
                {
                    
            return false;
                }
                
                
            if(! init_graphics())
                    
            return false;

                setup_matrices();

                g_device
            ->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
                
                g_device
            ->SetTextureStageState(0, D3DTSS_COLOROP,    D3DTOP_MODULATE);
                
            //g_device->SetTextureStageState(0, D3DTSS_COLOROP,    D3DTOP_SELECTARG2);
                
            //g_device->SetTextureStageState(0, D3DTSS_COLOROP,    D3DTOP_SELECTARG1);
                g_device->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
                g_device
            ->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);

                
            //g_device->SetTextureStageState(0, D3DTSS_ALPHAOP,    D3DTOP_SELECTARG1);
                
            //g_device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
                
            //g_device->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
                
                
            return true;
            }

            void cleanup()
            {
                release_com(g_texture);
                release_com(g_vertex_buffer);
                release_com(g_device);
                release_com(g_d3d);
            }

            void render()
            {
                g_device
            ->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(555), 1.0f0);

                g_device
            ->BeginScene();

                setup_material_light();

                g_device
            ->SetTexture(0, g_texture);
                g_device
            ->SetStreamSource(0, g_vertex_buffer, 0sizeof(sCustomVertex));
                g_device
            ->SetFVF(D3DFVF_CUSTOM_VERTEX);
                g_device
            ->DrawPrimitive(D3DPT_TRIANGLESTRIP, 02 * 50 - 2);

                g_device
            ->EndScene();

                g_device
            ->Present(NULL, NULL, NULL, NULL);
            }

            LRESULT WINAPI WinProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
            {
                
            switch(msg)
                {
                
            case WM_KEYDOWN:
                    
            switch(wParam)
                    {
                    
            case VK_ESCAPE:
                        DestroyWindow(hwnd);
                        
            break;        
                    }        
                        
                    
            break;    

                
            case WM_DESTROY:        
                    PostQuitMessage(
            0);
                    
            return 0;
                }

                
            return DefWindowProc(hwnd, msg, wParam, lParam);
            }

            int WINAPI WinMain(HINSTANCE inst, HINSTANCE, LPSTR, INT)
            {
                WNDCLASSEX wc;

                wc.cbSize            
            = sizeof(WNDCLASSEX);
                wc.style            
            = CS_CLASSDC;
                wc.lpfnWndProc        
            = WinProc;
                wc.cbClsExtra        
            = 0;
                wc.cbWndExtra        
            = 0;
                wc.hInstance        
            = inst;
                wc.hIcon            
            = NULL;
                wc.hCursor            
            = NULL;
                wc.hbrBackground    
            = NULL;
                wc.lpszMenuName        
            = NULL;
                wc.lpszClassName    
            = CLASS_NAME;
                wc.hIconSm            
            = NULL;

                
            if(! RegisterClassEx(&wc))
                    
            return -1;

                HWND hwnd 
            = CreateWindow(CLASS_NAME, "Direct3D App", WS_OVERLAPPEDWINDOW, 200100480480,
                                         NULL, NULL, wc.hInstance, NULL);    

                
            if(hwnd == NULL)
                    
            return -1;

                
            if(init_d3d(hwnd))
                {
                    ShowWindow(hwnd, SW_SHOWDEFAULT);
                    UpdateWindow(hwnd);

                    MSG msg;
                    ZeroMemory(
            &msg, sizeof(msg));

                    
            while(msg.message != WM_QUIT)
                    {
                        
            if(PeekMessage(&msg, NULL, 00, PM_REMOVE))
                        {
                            TranslateMessage(
            &msg);
                            DispatchMessage(
            &msg);
                        }
                            
                        render();
                        Sleep(
            10);
                    }
                }

                cleanup();
                UnregisterClass(CLASS_NAME, wc.hInstance);    

                
            return 0;
            }


            在該示例程序中,每個像素的最終顏色是由光照顏色和紋理顏色共同確定的。

            可以說對于三維圖形程序設計其所有的操作最后都是為了得到每個像素的顏色,即像素最終顯示顏色。

            目前為止有三種基本情況:

            (1)不使用燈光、材質和紋理。圖元頂點的顏色直接取頂點數據中設置的頂點顏色,如果在圖元頂點不包含頂點顏色,則默認為黑色。有了圖元頂點的顏色,根據著色模式渲染狀態,通過插值可得到每個像素的顏色。

            (2)使用燈光和材質,但不使用紋理映射。在這種情況下,圖元頂點顏色取決于光照計算,由光照計算得到頂點顏色后,根據著色模式渲染狀態,通過插值得到每個像素的顏色。

            (3)使用紋理映射。在這種情況下,像素的最后顏色取決于紋理階段混合狀態,具體說取決于每個紋理階段顏色操作和兩個顏色參數的來源。


            posted on 2008-05-07 18:05 lovedday 閱讀(1874) 評論(0)  編輯 收藏 引用

            公告

            導航

            統計

            常用鏈接

            隨筆分類(178)

            3D游戲編程相關鏈接

            搜索

            最新評論

            久久免费视频一区| 久久99精品国产| 精品国产日韩久久亚洲| 久久精品无码一区二区WWW| 中文国产成人精品久久不卡 | 人妻中文久久久久| 77777亚洲午夜久久多人| 久久99国产精品久久| 一级女性全黄久久生活片免费 | 久久天天婷婷五月俺也去 | 国产综合精品久久亚洲| 亚洲国产精品无码久久青草| 久久丫精品国产亚洲av不卡| 久久黄视频| 99久久精品影院老鸭窝| 亚洲色欲久久久久综合网| 婷婷综合久久狠狠色99h| 亚洲AV无码一区东京热久久| 久久精品无码一区二区三区日韩| 亚洲国产美女精品久久久久∴| 国产精品无码久久久久| 久久精品黄AA片一区二区三区| 亚洲天堂久久久| 久久激情五月丁香伊人| 久久精品视频网| 99久久无色码中文字幕| 色综合久久久久久久久五月| 亚洲人成无码久久电影网站| 久久综合狠狠综合久久激情 | 久久婷婷国产综合精品| 亚洲精品乱码久久久久久按摩| 精品久久久久成人码免费动漫| 婷婷久久综合九色综合九七| 久久99精品久久久久久秒播| 国产成人AV综合久久| 国产精品无码久久综合网| 国产精品成人久久久久久久| 国产国产成人久久精品| 久久精品国产91久久综合麻豆自制| 欧美大香线蕉线伊人久久| 久久久久女人精品毛片|