• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            天行健 君子當自強而不息

            Working with skeletal animation(6)

            Mapping Bones to Frames

            If you peruse an .X file, you might notice some similarities between the Frame data objects and the SkinWeights objects. For every bone in your skeletal structure, there is a matching SkinWeights object embedded inside a Mesh object that contains the name of a Frame object (or a reference to a Frame object). That's right−each bone is named after its corresponding Frame data object!

            After you load your skinned mesh, you need to connect each bone to its corresponding frame. This is simply a matter of iterating all bones, getting the name of each, and searching the list of frames for a match. Each matching frame pointer is stored in a special bone structure of your design.

            I embedded the bone−mapping data in the D3DXMESHCONTAINER_EX structure. The D3DXMESHCONTAINER_EX structure adds an array of texture objects, a secondary mesh container object, and the bone−mapping data to the D3DXMESHCONTAINER structure.

            struct D3DXMESHCONTAINER_EX : D3DXMESHCONTAINER
            {
              IDirect3DTexture9 **pTextures;
              ID3DXMesh *pSkinMesh;
              D3DXMATRIX **ppFrameMatrices;
              D3DXMATRIX *pBoneMatrices;

              // .. extra data and functions to follow
            };

            For this chapter, the important variables are ppFrameMatrices and pBoneMatrices. The pBoneMatrices array contains the transformations from your bone hierarchy; one transformation matrix is applied to each vertex belonging to the appropriate bone. The only problem is, the transformations from your bones are not stored in an array; they're stored as a hodgepodge of single transformations spread throughout the hierarchy.

            The D3DXMESHCONTAINER_EX structure provides a pointer to each bone transformation matrix contained within the hierarchy of D3DXFRAME_EX objects inside an array of pointers (ppFrameMatrices). Using these pointers, you can pull each bone transformation and place it into the pBoneMatrices array you'll create and use during the call to update your skinned mesh.

            You can create the array of pointers and the array of matrices after you load the bone hierarchy by taking the number of bones from the hierarchy and allocating an array of D3DXMATRIX pointers and D3DXMATRIX objects, like this:

            // pSkinInfo = skinned mesh object

            // Get the number of bones in the hierarchy
            DWORD NumBones = pSkinInfo−>GetNumBones();

            // Allocate an array of D3DXMATRIX pointers to point to each bones' transformation.
            D3DXMATRIX *ppFrameMatrices = new D3DXMATRIX*[NumBones];

            // Allocate an array of D3DXMATRIX matrix objects to contain the actual transformations
            // used to update the skinned mesh.
            D3DXMATRIX *pBoneMatrices = new D3DXMATRIX[NumBones];

            After you load your skinned mesh, you can set up the pointers to each bone transformation by querying the skinned mesh info object for each bone name. Using that, you can scan the list of frames for a match. For each matched bone, set the pointer to that frame's transformation matrix. When all bones and frames are matched up, you can then iterate the entire list and copy the matrices to the pBoneMatrices array.

            First let me show you how to match up the bones and frames. Remember that earlier in this chapter I mentioned that the bones are named after the frames. Using the ID3DXSkinInfo::GetBoneName function, you can obtain the name of the bone and frame to match.

            // Go through each bone and grab the name of each to work with
            for(DWORD i=0;i<pSkinInfo−>GetNumBones();i++) {
              // Get the bone name
              const char *BoneName = pSkinInfo−>GetBoneName(i);

            When you have the bone's name, you can scan through the list of frames in the hierarchy to look for a match. To do so, you use the recursive FindFrame function developed in the "Modifying Bone Orientation" section earlier in this chapter, as follows.

            // pRootFrame = D3DXFRAME_EX root frame object

            // Find matching name in frames
            D3DXFRAME_EX *pFrame = pRootFrame−>Find(BoneName);

            If a frame with the name provided by the bone is found, you can link to the frame's combined transformation matrix. If no match is found, then the link is set to NULL.

            // Match frame to bone
            if(pFrame)
              pMesh−>ppFrameMatrices[i] = &pFrame−>matCombined;
            else
              pMesh−>ppFrameMatrices[i] = NULL;
            }

            You might not understand the exact reasons for mapping the bones to the frame at this moment, but it will make more sense when you get into manipulating the skinned mesh and rebuilding the mesh to render it. For now, take each step in stride, and start by learning how to manipulate the skinned mesh.

             

            Manipulating the Skinned Mesh

            Now nothing is stopping you from twisting up that skeletal structure and going crazy. Just make sure it's your mesh's imaginary skeletal structure you're manipulating and not your own−I just hate it when I accidentally manipulate my bones into a pose I can't get out of for an hour! Kidding aside, you can now alter the frame orientations in your frame hierarchy. It's those frames that represent your bones.

            Speaking of altering the frame orientations, be aware that you should only rotate your bones; you should never translate them. Scaling is acceptable, but be careful−remember that all transformations propagate throughout the hierarchy. If you were to scale your character's upper arm, the lower arm would be scaled as well.

            I covered changing the orientations of the various bones earlier in this chapter, in the "Modifying Bone Orientation" section, so I won't rehash anything here. After you've loaded the skeletal structure and skinned mesh, feel free to start working with the bone transformations using those techniques covered earlier. When you're ready, you can update the skinned mesh and prepare it for rendering.


            posted on 2008-04-23 19:39 lovedday 閱讀(264) 評論(0)  編輯 收藏 引用

            公告

            導航

            統計

            常用鏈接

            隨筆分類(178)

            3D游戲編程相關鏈接

            搜索

            最新評論

            欧美激情精品久久久久久久| 亚洲欧美精品伊人久久| 久久国产色av免费看| 国产成人精品综合久久久久| 国产精品视频久久| 久久精品无码一区二区三区免费| 亚洲国产一成久久精品国产成人综合 | 亚洲乱码中文字幕久久孕妇黑人| 精品人妻伦九区久久AAA片69| 精品久久久久久久无码| 久久久精品日本一区二区三区 | 99久久国产亚洲高清观看2024| 久久久久亚洲精品天堂久久久久久| 国内精品综合久久久40p| 精品久久久无码中文字幕| 人妻无码中文久久久久专区| 欧美午夜A∨大片久久| 99麻豆久久久国产精品免费| 综合久久国产九一剧情麻豆| 99久久99久久精品国产片| 久久综合狠狠综合久久| 国产精品久久新婚兰兰| 国产高潮国产高潮久久久91 | 久久夜色精品国产噜噜亚洲AV | 久久久99精品成人片中文字幕 | 999久久久免费国产精品播放| 中文字幕无码精品亚洲资源网久久| 国产精品免费久久久久影院| 精品久久久久久亚洲| 人妻无码αv中文字幕久久琪琪布 人妻无码精品久久亚瑟影视 | 久久九九兔免费精品6| 久久亚洲色一区二区三区| 嫩草影院久久99| www.久久热| 免费精品99久久国产综合精品| 国产精品一区二区久久精品| 精品久久久久中文字幕日本| 国产精品久久久久久福利漫画| 久久久综合九色合综国产| 色综合久久88色综合天天| 中文字幕久久欲求不满|