青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

天行健 君子當自強而不息

Timing in Animation and Movement(4)

Walking Curved Paths

In your game, the paths need not be so straight. You can have your objects move along a nice, curvy path, such as when a character walks around in a circle. Trying to define a smooth circular path using straight lines is nearly impossible, so you must develop a second type of path−one that can handle curves. Not just any type of curve, however. Remember that this is advanced animation−we're going for the big leagues here, and that major hitter you want is a cubic Bezier curve! As Figure 2.3 illustrates, a cubic Bezier curve uses four control points (two end points and two midpoints) to define the various aspects of the curve.

As you can see, a cubic Bezier curve is not a typical curve−it can bend and twist in a myriad of curved shapes. By manipulating the four control points you can create some really useful paths to use in your projects. The way a cubic Bezier curve works is fairly easy in theory, but a little difficult to implement.

To understand the theory behind a cubic Bezier curve, take a look at Figure 2.4, which shows how the curve is drawn using the four control points.

The purpose of dividing the lines that connect the curve's points is both for visual aid and to serve as the curve's granularity (or smoothness). The more additional divisions you add to each line, the smoother the resulting curve will look. To actually see the curve that the points create, you need to connect the divisions on either side of the line, as you can see in Figure 2.5

Although it's cool to draw the curve in the manner I just showed you, it won't make much sense to your computer, nor will it help you figure out the coordinates of a point in the curve. What you need to do is come up with a way to calculate the exact coordinates of any point along the curve. That way, you can do anything you want with the coordinates, from drawing curves to calculating the coordinates where you want to position an object along the curve path! The formula to calculate the coordinates along the curve is

In the formula, the control points are defined as P0, P1, P2, and P3, which represent the starting point, first midpoint, second midpoint, and ending point, respectively. The resulting coordinates along the curve are defined as C(s), where s is a scalar value (or a time value) ranging from 0 to 1 that determines the position along the curve for which the coordinates should be calculated.

A value of s=0 designates the starting point, whereas a value of s=1 designates the ending point. Any value of s from 0 to 1 designates a point between the two end points. Therefore, to calculate the midpoint of the curve, you would specify s=0.5. The one−quarter position of the curve would be s=0.25, and so on.

To make things easy, you can create a function that takes the four control points (as vector objects) and a scalar value as parameters. The function will return another vector object that contains the coordinates of the point along the curve as specified by the four points and the scalar value. Call the function CubicBezierCurve, and use the following prototype to define it.

void CubicBezierCurve(D3DXVECTOR3 *vecPoint1, // Start point
  D3DXVECTOR3 *vecPoint2, // Midpoint 1
  D3DXVECTOR3 *vecPoint3, // Midpoint 2
  D3DXVECTOR3 *vecPoint4, // End point
  float Scalar,
  D3DXVECTOR3 *vecOut)
{

Now get ready for this−you're going to recreate the cubic Bezier curve formula in program code by replacing
the appropriate variables with the control point vectors and the scalar value.

// C(s) =
*vecOut =
// P0 * (1 − s)3 +
(*vecPoint1)*(1.0f−Scalar)*(1.0f−Scalar)*(1.0f−Scalar) +
// P1 * 3 * s * (1 − s)2 +
(*vecPoint2)*3.0f*Scalar*(1.0f−Scalar)*(1.0f−Scalar) +
// P2 * 3 * s2 * (1 − s) +
(*vecPoint3)*3.0f*Scalar*Scalar*(1.0f−Scalar) +
// P3 * s3
(*vecPoint4)*Scalar*Scalar*Scalar;
}

That's it! Yep, from now on you can calculate the coordinates along a cubic Bezier curve by passing the four control points' coordinates, a scalar, and a returning vector object. For example, going back to the sample curve, you can use the following function call to CubicBezierCurve to find the parametric midpoint:

D3DXVECTOR3 vecPos;

CubicBezierCurve(&D3DXVECTOR3(−50.0f, 25.0f, 0.0f),
  &D3DXVECTOR3(0.0f, 50.0f, 0.0f),
  &D3DXVECTOR3(50.0f, 0.0f, 0.0f),
  &D3DXVECTOR3(25.0f, −50.0f, 0.0f) ,
  0.5f, &vecPos);

Getting back to the point, you can use the return coordinates from the CubicBezierCurve function (contained in the vecPos vector object) as the coordinates in which to place an object in the game. By slowly changing the scalar value from 0 to 1 (over a specified amount of time), you move the object from the start of the path to the end. For instance, to travel a curved path over a period of 1,000 milliseconds, you can use the following code:

// vecPoints[4] = Starting, midpoint 1, midpoint 2, and end points
// Every frame, use the following code to position an object along the curve based on the current time.
D3DXVECTOR3 vecPos;
float Scalar = (float)(timeGetTime() % 1001) / 1000.0f;

CubicBezierCurve(&vecPoints[0], &vecPoints[1],  &vecPoints[2], &vecPoints[3],  Scalar, &vecPos);

// Use vecPos.x, vecPos.y, and vecPos.z coordinates for object

That's cool, but having to deal with a scalar value is a little unorthodox when you need to work with actual 3D unit measurements. I mean, how are you supposed to know which scalar value to use when you want to move an object 50 units along the curved path? Isn't there a way to calculate the length of the curve and use that, much like you did with straight lines?

Strangely enough, no. There is no easy way to calculate the length of a Bezier curve. However, you can approximate the length using a few simple calculations. Assuming the four control points of the curve are denoted as p0, p1, p2, and p3, you can add the lengths between the points p0 and p1, p1 and p2, and p2 and p3, divide the result in half, and add the length between points p0 and p3 (also divided in half). In code, those calculations would look like this:

// p[4] = four control points' coordinate vectors
float Length01 = D3DXVec3Length(&(p[1]−p[0]));
float Length12 = D3DXVec3Length(&(p[2]−p[1]));
float Length23 = D3DXVec3Length(&(p[3]−p[2]));
float Length03 = D3DXVec3Length(&(p[3]−p[0]));

float CurveLength = (Length01+Length12+Length23) * 0.5f + Length03 * 0.5f;

The CurveLength variable will therefore contain the estimated length of the curve. You'll use the CurveLength value much like you did in the straight−path calculations to convert the unit length to a scalar value to calculate the exact coordinates along the curve.

// Pos = position in curve (from 0−CurveLength)
float Scalar = Pos / CurveLength;
CubicBezierCurve(&vecPoints[0], &vecPoints[1], &vecPoints[2], &vecPoints[3],  Scalar, &vecPos);

As you can see, cubic Bezier curves aren't too difficult to use. The formulas are pretty basic, and I'd rather leave it up to the math textbooks to go into the details of the calculations (or a fine book like Kelly Dempski's Focus On Curves and Surfaces). For now, I'm only interested in making it work for your game project. Speaking of that, let's see what you can do with your newfound knowledge of using straight and curved paths to create routes.

 

Main Routine:

#include <windows.h>
#include 
"d3d9.h"
#include 
"d3dx9.h"
#include 
"Direct3D.h"

struct sLine
{
    D3DXVECTOR3 start;
    D3DXVECTOR3 end;
};

struct sCurve
{
    D3DXVECTOR3 start;
    D3DXVECTOR3 end;
    D3DXVECTOR3 control1;
    D3DXVECTOR3 control2;
};

struct sBackdropVertex
{
    
float x, y, z, rhw;
    
float u, v;        
};

#define BACKDROP_FVF (D3DFVF_XYZRHW | D3DFVF_TEX1)

////////////////////////////////////////////////////////////////////////////////////////////////

IDirect3D9
*                g_d3d;
IDirect3DDevice9
*        g_device;

D3DXMESHCONTAINER_EX
*    g_robot_mesh_container;
D3DXMESHCONTAINER_EX
*    g_ground_mesh_container;

D3DXVECTOR3                g_robot_pos[
4];
D3DXVECTOR3                g_robot_last_pos[
4];

IDirect3DVertexBuffer9
*    g_backdrop_vb;
IDirect3DTexture9
*        g_backdrop_texture;

sLine                    g_lines[
2];
sCurve                    g_curves[
2];

const char g_class_name[] = "TimeMovementClass";
const char g_caption[] = "Timed Movement Demo";

////////////////////////////////////////////////////////////////////////////////////////////////

LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);

bool do_init(HWND hwnd);
void do_shutdown();
void do_frame();

void cal_pos_in_line(const sLine* line, float scalar, D3DXVECTOR3* pos);
void cubic_bezier_curve(const sCurve* curve, float scalar, D3DXVECTOR3* pos);

//////////////////////////////////////////////////////////////////////////////////////////////

int PASCAL WinMain(HINSTANCE inst, HINSTANCE, LPSTR, int cmd_show)
{      
    CoInitialize(NULL);    
// Initialize the COM system

    
// Create the window class here and register it

    WNDCLASSEX win_class;  

    win_class.cbSize        
= sizeof(win_class);
    win_class.style         
= CS_CLASSDC;
    win_class.lpfnWndProc   
= window_proc;
    win_class.cbClsExtra    
= 0;
    win_class.cbWndExtra    
= 0;
    win_class.hInstance     
= inst;
    win_class.hIcon         
= LoadIcon(NULL, IDI_APPLICATION);
    win_class.hCursor       
= LoadCursor(NULL, IDC_ARROW);
    win_class.hbrBackground 
= NULL;
    win_class.lpszMenuName  
= NULL;
    win_class.lpszClassName 
= g_class_name;
    win_class.hIconSm       
= LoadIcon(NULL, IDI_APPLICATION);

    
if(!RegisterClassEx(&win_class))
        
return FALSE;

    
// Create the main window
    HWND hwnd = CreateWindow(g_class_name, g_caption, WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
                             
00640480, NULL, NULL, inst, NULL);

    
if(hwnd == NULL)
        
return FALSE;

    ShowWindow(hwnd, cmd_show);
    UpdateWindow(hwnd);

    
// Call init function and enter message pump
    if(do_init(hwnd)) 
    {
        MSG msg;    
        ZeroMemory(
&msg, sizeof(MSG));

        
// Start message pump, waiting for user to exit
        while(msg.message != WM_QUIT) 
        {
            
if(PeekMessage(&msg, NULL, 00, PM_REMOVE)) 
            {
                TranslateMessage(
&msg);
                DispatchMessage(
&msg);
            }
      
            do_frame();    
// Render a single frame
        }
    }
  
    do_shutdown();
    UnregisterClass(g_class_name, inst);
    CoUninitialize();

    
return 0;
}

LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
    
// Only handle window destruction messages
    switch(msg) 
    {
    
case WM_DESTROY:
        PostQuitMessage(
0);
        
break;

    
case WM_KEYDOWN:
        
if(wParam == VK_ESCAPE)
            DestroyWindow(hwnd);

        
break;
    }

    
return DefWindowProc(hwnd, msg, wParam, lParam);
}

bool do_init(HWND hwnd)
{
    init_d3d(
&g_d3d, &g_device, hwnd, falsefalse);

    
if(FAILED(load_mesh(&g_robot_mesh_container, g_device, "..\\Data\\robot.x""..\\Data\\"00)))
        
return FALSE;

    
if(FAILED(load_mesh(&g_ground_mesh_container, g_device, "..\\Data\\ground.x""..\\Data\\"00)))
        
return FALSE;

    
// create the backdrop

    sBackdropVertex backdrop_verts[
4= 
    {
        {   
0.0f,   0.01.01.0f0.0f0.0f },
        { 
640.0f,   0.01.01.0f1.0f0.0f },
        {   
0.0f480.01.01.0f0.0f1.0f },
        { 
640.0f480.01.01.0f1.0f1.0f }            
    };

    g_device
->CreateVertexBuffer(sizeof(backdrop_verts), D3DUSAGE_WRITEONLY, BACKDROP_FVF, D3DPOOL_DEFAULT,
                                 
&g_backdrop_vb, NULL);

    
char* ptr;

    g_backdrop_vb
->Lock(00, (void**)&ptr, 0);
    memcpy(ptr, backdrop_verts, 
sizeof(backdrop_verts));
    g_backdrop_vb
->Unlock();

    D3DXCreateTextureFromFile(g_device, 
"..\\Data\\Backdrop.bmp"&g_backdrop_texture);

    
// setup a directional light

    D3DLIGHT9 light;
    ZeroMemory(
&light, sizeof(D3DLIGHT9));

    light.Type 
= D3DLIGHT_DIRECTIONAL;
    light.Diffuse.r 
= light.Diffuse.g = light.Diffuse.b = light.Diffuse.a = 1.0f;
    light.Direction 
= D3DXVECTOR3(0.0f-0.5f0.5f);

    g_device
->SetLight(0&light);
    g_device
->LightEnable(0, TRUE);

    
// define two lines
    g_lines[0].start = D3DXVECTOR3(-150.0f10.0f,   0.0f);
    g_lines[
0].end   = D3DXVECTOR3(   0.0f10.0f150.0f);
  
    g_lines[
1].start = D3DXVECTOR3(0.0f,  10.0f0.0f);
    g_lines[
1].end   = D3DXVECTOR3(0.0f150.0f0.0f);

    
// define two curves
    g_curves[0].start    = D3DXVECTOR3(  0.0f10.0f150.0f);
    g_curves[
0].control1 = D3DXVECTOR3(150.0f10.0f100.0f);
    g_curves[
0].control2 = D3DXVECTOR3(200.0f10.0f,  50.0f);
    g_curves[
0].end      = D3DXVECTOR3(150.0f10.0f,   0.0f);

    g_curves[
1].start    = D3DXVECTOR3(-150.0f50.0f-100.0f);
    g_curves[
1].control1 = D3DXVECTOR3( -20.0f0.0f-100.0f);
    g_curves[
1].control2 = D3DXVECTOR3(  20.0f0.0f-100.0f);
    g_curves[
1].end      = D3DXVECTOR3( 150.0f50.0f-100.0f);

    
return true;
}

void do_shutdown()
{
    
// free mesh data
    delete g_robot_mesh_container;    g_robot_mesh_container = NULL;
    delete g_ground_mesh_container;    g_ground_mesh_container 
= NULL;

    release_com(g_backdrop_vb);
    release_com(g_backdrop_texture);

    
// release D3D objects
    release_com(g_device);
    release_com(g_d3d);
}

void do_frame()
{
    
// compute a time scalar based on a sine wave
    float time   = timeGetTime() * 0.001f;
    
float scalar = (sin(time) + 1.0f* 0.5f;

    
// update the position of the robots
    cal_pos_in_line(&g_lines[0], scalar, &g_robot_pos[0]);
    cal_pos_in_line(
&g_lines[1], scalar, &g_robot_pos[1]);
    cubic_bezier_curve(
&g_curves[0], scalar, &g_robot_pos[2]);
    cubic_bezier_curve(
&g_curves[1], scalar, &g_robot_pos[3]);

    
// set a view transformation matrix

    D3DXMATRIX  mat_view;
    D3DXVECTOR3 eye(
0.0f240.0f-350.0f);
    D3DXVECTOR3 at(
0.0f0.0f0.0f);
    D3DXVECTOR3 up(
0.0f1.0f0.0f);

    D3DXMatrixLookAtLH(
&mat_view, &eye, &at, &up);
    g_device
->SetTransform(D3DTS_VIEW, &mat_view);

    
// clear the device and start drawing the scene

    g_device
->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_RGBA(000255), 1.0f0);

    g_device
->BeginScene();

    
// draw the backdrop
    g_device->SetFVF(BACKDROP_FVF);
    g_device
->SetStreamSource(0, g_backdrop_vb, 0sizeof(sBackdropVertex));
    g_device
->SetTexture(0, g_backdrop_texture);
    g_device
->DrawPrimitive(D3DPT_TRIANGLESTRIP, 02);

    g_device
->SetRenderState(D3DRS_LIGHTING, TRUE);

    
// draw the ground mesh

    D3DXMATRIX mat_world;
    D3DXMatrixIdentity(
&mat_world);
    g_device
->SetTransform(D3DTS_WORLD, &mat_world);

    draw_mesh(g_ground_mesh_container);

    
// draw each of the four robots at theire respective locations
    for(DWORD i = 0; i < 4; i++)
    {
        
// calculate the rotation of the robots based on last known position, and update last position once done.

        D3DXVECTOR3 diff 
= g_robot_pos[i] - g_robot_last_pos[i];

        
float rot_x =  atan2(diff.y, diff.z);
        
float rot_y = -atan2(diff.z, diff.x);

        g_robot_last_pos[i] 
= g_robot_pos[i];

        
// rotate the robot to point in direction of movement
        D3DXMatrixRotationYawPitchRoll(&mat_world, rot_y, rot_x, 0.0f);

        
// position the robot by setting the coordinates directly in the world transformation matrix

        mat_world._41 
= g_robot_pos[i].x;
        mat_world._42 
= g_robot_pos[i].y;
        mat_world._43 
= g_robot_pos[i].z;

        g_device
->SetTransform(D3DTS_WORLD, &mat_world);

        draw_mesh(g_robot_mesh_container);
    }

    g_device
->SetRenderState(D3DRS_LIGHTING, FALSE);

    g_device
->EndScene();

    g_device
->Present(NULL, NULL, NULL, NULL);
}

void cal_pos_in_line(const sLine* line, float scalar, D3DXVECTOR3* pos)
{
    
*pos = (line->end - line->start) * scalar + line->start;
}

void cubic_bezier_curve(const sCurve* curve, float scalar, D3DXVECTOR3* pos)
{
    
*pos = (curve->start) * (1.0f - scalar) * (1.0f - scalar) * (1.0f - scalar)  +
           (curve
->control1) * 3.0f * scalar * (1.0f - scalar) * (1.0f - scalar) +
           (curve
->control2) * 3.0f * scalar * scalar * (1.0f - scalar)          +
           (curve
->end) * scalar * scalar * scalar;
}

 

Runtime Snap:

 

download source file


posted on 2008-04-16 15:31 lovedday 閱讀(412) 評論(0)  編輯 收藏 引用

公告

導航

統計

常用鏈接

隨筆分類(178)

3D游戲編程相關鏈接

搜索

最新評論

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            一色屋精品视频免费看| 欧美日韩精品免费看| 国产一区二区三区在线观看免费视频| 亚洲婷婷在线| 亚洲永久免费精品| 国产精品永久免费观看| 久久久久国产精品www| 久久久久久噜噜噜久久久精品| 国产亚洲成av人在线观看导航| 久久久久久国产精品mv| 久久久福利视频| 亚洲精品久久7777| 中国av一区| 在线看成人片| 日韩午夜在线视频| 国产视频在线观看一区二区三区| 老妇喷水一区二区三区| 欧美成人69| 欧美一区影院| 欧美国产三区| 久久精品国产免费看久久精品| 久久精品五月婷婷| 亚洲视频在线观看网站| 欧美在线免费看| 99热免费精品| 久久精品免费播放| 午夜精品福利在线| 欧美成人在线网站| 久久精品国产精品| 欧美三区在线视频| 欧美大片在线看| 国产欧美短视频| 亚洲精品裸体| 国产婷婷色一区二区三区| 亚洲国产精品电影在线观看| 国产亚洲激情视频在线| 亚洲人成在线免费观看| 国内精品国语自产拍在线观看| 亚洲三级视频在线观看| 伊人久久亚洲美女图片| 亚洲伊人色欲综合网| 亚洲老板91色精品久久| 久久久久.com| 久久本道综合色狠狠五月| 欧美偷拍另类| 亚洲欧洲一区二区在线播放| 在线 亚洲欧美在线综合一区| 亚洲一区二区三区在线看| 亚洲日本欧美天堂| 久久伊人亚洲| 裸体素人女欧美日韩| 国产乱码精品一区二区三区av| 亚洲精品在线观看免费| 最新国产乱人伦偷精品免费网站 | 亚洲国产精品第一区二区三区| 亚洲一区不卡| 亚洲欧美在线观看| 国产精品免费看久久久香蕉| 日韩视频在线一区二区| 一区二区三区精密机械公司| 欧美二区在线播放| 91久久精品一区二区别| 亚洲高清免费| 欧美成人午夜77777| 亚洲国产成人精品女人久久久 | 国产精品美女久久久久av超清| 亚洲全黄一级网站| 一区二区三区高清在线| 欧美日韩国产一区二区| 日韩视频免费观看| 亚洲无亚洲人成网站77777| 欧美日韩在线播放三区| 夜夜嗨一区二区| 欧美一区二区三区播放老司机| 国产精品久久久久秋霞鲁丝| 亚洲主播在线| 久久免费精品视频| 在线观看欧美| 欧美激情一区二区三区全黄| 亚洲最新在线| 久久九九国产精品| 精品999网站| 欧美顶级大胆免费视频| 亚洲美女在线看| 欧美中文字幕视频在线观看| 国外成人网址| 欧美欧美在线| 午夜在线视频观看日韩17c| 巨乳诱惑日韩免费av| 91久久精品网| 国产精品乱码人人做人人爱| 欧美专区18| 亚洲精品国产精品国自产观看| 亚洲欧美www| 亚洲高清激情| 国产精品美女| 欧美91精品| 亚洲综合三区| 亚洲高清视频中文字幕| 亚洲欧美久久久| 最新中文字幕亚洲| 国产美女精品人人做人人爽| 久久久精品日韩欧美| 在线综合亚洲| 亚洲国产一区二区在线| 欧美一级播放| 日韩图片一区| 在线高清一区| 国产精品入口福利| 欧美激情综合在线| 久久久青草婷婷精品综合日韩| 日韩图片一区| 欧美电影电视剧在线观看| 午夜精品久久久久久| 最新亚洲一区| 亚洲第一在线| 国产日产欧产精品推荐色| 欧美理论在线| 美女视频网站黄色亚洲| 亚洲欧美一区二区三区久久 | 久久国产精品99国产精| 日韩视频在线免费| 亚洲黄色在线观看| 能在线观看的日韩av| 欧美在线观看一区二区| 亚洲午夜视频在线观看| 亚洲日本中文字幕| 在线观看亚洲a| 激情伊人五月天久久综合| 国产伦精品免费视频 | 久久国产成人| 先锋影音一区二区三区| 亚洲午夜国产一区99re久久 | 久久精品最新地址| 性色av一区二区怡红| 午夜精品一区二区三区在线视 | 一区二区三区在线看| 国产亚洲精品综合一区91| 国产精品入口福利| 国产精品一区二区你懂得| 国产精品久久久久久久第一福利| 欧美精品日韩精品| 欧美三区美女| 国产精品五月天| 国产精品视频999| 国产精品一区二区三区四区| 国产精品免费一区二区三区在线观看| 欧美日韩亚洲视频一区| 欧美日韩一区二区精品| 欧美日韩一区二区欧美激情| 欧美日韩亚洲一区| 国产精品日韩二区| 国产人成精品一区二区三| 国产日韩在线一区二区三区| 国产欧美大片| 亚洲国产精品福利| 99视频+国产日韩欧美| 亚洲深夜福利视频| 欧美一级网站| 欧美aⅴ一区二区三区视频| 欧美成人精品影院| 亚洲精品日韩激情在线电影| 在线一区视频| 欧美一区在线看| 欧美成人黑人xx视频免费观看| 欧美日本在线| 国产九九精品视频| 在线不卡中文字幕| 一本在线高清不卡dvd| 午夜亚洲精品| 欧美激情第六页| 亚洲一区二区在线免费观看视频 | 久久中文欧美| 欧美日韩天天操| 国自产拍偷拍福利精品免费一| 亚洲国产成人久久综合一区| 国产精品99久久久久久有的能看| 亚洲欧美美女| 欧美激情第六页| 午夜久久久久久| 欧美极品在线视频| 国产一区二区三区四区三区四 | 韩国精品主播一区二区在线观看| 亚洲欧洲日产国产网站| 西瓜成人精品人成网站| 亚洲丰满在线| 欧美专区中文字幕| 国产精品久久午夜夜伦鲁鲁| 最新日韩欧美| 久久久久五月天| 在线视频亚洲| 欧美风情在线观看| 一区二区三区在线视频免费观看 | 亚洲国产成人av好男人在线观看| 亚洲午夜av在线| 亚洲国产另类久久精品| 久久精品二区| 国产一区二区三区视频在线观看| 在线综合亚洲| 亚洲国产一成人久久精品|