• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            天行健 君子當自強而不息

            Timing in Animation and Movement(2)

            Animating with Time

            In the olden days, games were made to animate graphics based on every frame processed. To ensure that the animations always ran at the same speed, those games sometimes limited the number of frames per second that could be processed. Of course, those old games were made for computers that couldn't easily process more than 20 to 30 frames per second, so it was safe to assume that limiting the number of frames per second would never surpass that 20 or 30 frames per second mark.

            But that was then, and this is now. Modern computers can run circles around their ancestors, and limiting the number of frames to control animation is a definite no−no in this day and age. You need to base the speed of animation on the amount of time that has elapsed since the start of the animation sequence. Doing so is no problem because you already know that you can record the time when the animation started. Additionally, for each frame to update, you can read the current time and subtract the starting animation time. The result is a time value to use as an offset to your animation sequence.

            Suppose you are using time−based key frames in your animation engine. You can use a simple key−frame structure that stores the time and a transformation matrix to use, such as this:

            typedef struct sKeyframe {
              DWORD Time;
              D3DMATRIX matTransformation;
            } sKeyframe;

            As is typical for key frames, you can store an array of matrices, each with its own unique time. These structures are stored in chronological order, with the lower time values first. Therefore, you can create a small sequence of transformations to orient an object over time (see Figure 2.1).

            To replicate the key frames shown in Figure 2.1, I've constructed the following array:

            sKeyframe Keyframes[4] = {
            { 0, 1.00000f, 0.00000f, 0.00000f, 0.00000f,
            0.00000f, 1.00000f, 0.00000f, 0.00000f,
            0.00000f, 0.00000f, 1.00000f, 0.00000f,
            0.00000f, 0.00000f, 0.00000f, 1.00000f; },

            { 400, 0.000796f, 1.00000f, 0.00000f, 0.00000f,
            −1.00000f, 0.000796f, 0.00000f, 0.00000f,
            0.00000f, 0.00000f, 1.00000f, 0.00000f,
            50.00000f, 0.00000f, 0.00000f, 1.00000f; },

            { 800, −0.99999f, 0.001593f, 0.00000f, 0.00000f,
            −0.001593f, −0.99999f, 0.00000f, 0.00000f,
            0.00000f, 0.00000f, 1.00000f, 0.00000f,
            25.00000f, 25.00000f, 0.00000f, 1.00000f; },

            { 1200, 1.00000f, 0.00000f, 0.00000f, 0.00000f,
            0.00000f, 1.00000f, 0.00000f, 0.00000f,
            0.00000f, 0.00000f, 1.00000f, 0.00000f,
            0.00000f, 0.00000f, 0.00000f, 1.00000f; }
            };

            Now comes the fun part. Using the timing methods you read about previously, you can record the time at which the animation started. And, for each frame to update the animation, you can calculate the elapsed time since the animation started (using that as an offset to the key frames). Create a simple frame update function that will determine which transformation to use depending on the elapsed time since the update function was first called.

            void FrameUpdate()
            {
              static DWORD StartTime = timeGetTime();
              DWORD Elapsed = timeGetTime() − StartTime;

            With the elapsed time now in hand, you can scan the key frames to look for the two between which the time value lies. For example, if the current time is 60 milliseconds, the animation is somewhere between key frame #0 (at 0 milliseconds) and key frame #1 (at 400 milliseconds). A quick scan through the key frames determines which to use based on the elapsed time.

            DWORD Keyframe = 0; // Start at 1st keyframe

            for(DWORD i=0;i<4;i++) {
              // If time is greater or equal to a key−frame's time then update the keyframe to use
              if(Time >= Keyframes[i].Time)
                Keyframe = i;
            }

            At the end of the loop, the Keyframe variable will hold the first of the two key frames between which the animation time lies. If Keyframe isn't the last key frame in the array (in which there are four key frames), then you can add 1 to Keyframe to obtain the second key frame. If Keyframe is the last key frame in the array, you can use the same key−frame value in your calculations.

            Using a second variable to store the next key frame in line is perfect. Remember that if Keyframe is the last key frame in the array, you need to set this new key frame to the same value.

            DWORD Keyframe2 = (Keyframe==3) ? Keyframe:Keyframe + 1;

            Now you need to grab the time values and calculate a scalar based on the time difference of the keys and the position of the key frame between the keys.

            DWORD TimeDiff = Keyframes[Keyframe2].Time − Keyframes[Keyframe].Time;

            // Make sure there's a time difference to avoid divide−by−zero errors later on.
            if(!TimeDiff)
              TimeDiff=1;

            float Scalar = (Time − Keyframes[Keyframe].Time) / TimeDiff;

            You now have the scalar value (which ranges from 0 to 1) used to interpolate the transformation matrices of the keys. To make it easy to deal with the transformation matrices, those matrices are cast to a D3DXMATRIX type so that D3DX does the hard work for you.

            // Calculate the difference in transformations
            D3DXMATRIX matInt = D3DXMATRIX(Keyframes[Keyframe2].matTransformation) −
                                                D3DXMATRIX(Keyframes[Keyframe].matTransformation);

            matInt *= Scalar; // Scale the difference

            // Add scaled transformation matrix back to 1st keyframe matrix
            matInt += D3DXMATRIX(Keyframes[Keyframe].matTransformation);

            At this point, you have the proper animated transformation matrix to use stored in matInt. To see your hard work come to life, set matInt as the world transformation and render your animated mesh.

             

            Main Routine:

            #include <windows.h>
            #include 
            "d3d9.h"
            #include 
            "d3dx9.h"
            #include 
            "Direct3D.h"

            IDirect3D9
            *                g_d3d;
            IDirect3DDevice9
            *        g_device;
            D3DXMESHCONTAINER_EX
            *    g_robot_mesh_container;

            struct sKeyFrame
            {
                DWORD        time;
                D3DMATRIX    mat_trans;
            };

            // NOTE: transfromation matrix of key frame 0 is same as key frame 3.
            sKeyFrame g_key_frames[4= 
            {
              
            // key_frame 1, 0ms
              {   01.000000f0.000000f0.000000f0.000000f,
                     
            0.000000f1.000000f0.000000f0.000000f,
                     
            0.000000f0.000000f1.000000f0.000000f,
                     
            0.000000f0.000000f0.000000f1.000000f },

              
            // key_frame 2, 40ms
              {  4000.000796f1.000000f0.000000f0.000000f,
                     
            -1.000000f0.000796f0.000000f0.000000f,
                      
            0.000000f0.000000f1.000000f0.000000f,
                     
            50.000000f0.000000f0.000000f1.000000f },

              
            // key_frame 3, 80ms
              {  800-0.999999f,  0.001593f0.000000f0.000000f,
                      
            -0.001593f-0.999999f0.000000f0.000000f,
                       
            0.000000f,  0.000000f1.000000f0.000000f,
                      
            25.000000f25.000000f0.000000f1.000000f },

              
            // key_frame 4, 120ms
              { 12001.000000f0.000000f0.000000f0.000000f,
                      
            0.000000f1.000000f0.000000f0.000000f,
                      
            0.000000f0.000000f1.000000f0.000000f,
                      
            0.000000f0.000000f0.000000f1.000000f }
            };

            const char g_class_name[] = "TimeAnimClass";
            const char g_caption[] = "Timed Animation";

            LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);

            bool do_init(HWND hwnd);
            void do_shutdown();
            void do_frame();

            //////////////////////////////////////////////////////////////////////////////////////////////

            int PASCAL WinMain(HINSTANCE inst, HINSTANCE, LPSTR, int cmd_show)
            {      
              CoInitialize(NULL);    
            // Initialize the COM system

              WNDCLASSEX win_class;

              
            // Create the window class here and register it
              win_class.cbSize        = sizeof(win_class);
              win_class.style         
            = CS_CLASSDC;
              win_class.lpfnWndProc   
            = window_proc;
              win_class.cbClsExtra    
            = 0;
              win_class.cbWndExtra    
            = 0;
              win_class.hInstance     
            = inst;
              win_class.hIcon         
            = LoadIcon(NULL, IDI_APPLICATION);
              win_class.hCursor       
            = LoadCursor(NULL, IDC_ARROW);
              win_class.hbrBackground 
            = NULL;
              win_class.lpszMenuName  
            = NULL;
              win_class.lpszClassName 
            = g_class_name;
              win_class.hIconSm       
            = LoadIcon(NULL, IDI_APPLICATION);

              
            if(!RegisterClassEx(&win_class))
                
            return FALSE;

              
            // Create the main window
              HWND hwnd = CreateWindow(g_class_name, g_caption, WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
                                       
            00640480, NULL, NULL, inst, NULL);

              
            if(hwnd == NULL)
                
            return FALSE;

              ShowWindow(hwnd, cmd_show);
              UpdateWindow(hwnd);

              
            // Call init function and enter message pump
              if(do_init(hwnd)) 
              {
                MSG msg;    
                ZeroMemory(
            &msg, sizeof(MSG));

                
            // Start message pump, waiting for user to exit
                while(msg.message != WM_QUIT) 
                {
                  
            if(PeekMessage(&msg, NULL, 00, PM_REMOVE)) 
                  {
                    TranslateMessage(
            &msg);
                    DispatchMessage(
            &msg);
                  }
                  
                  do_frame();    
            // Render a single frame
                }
              }
              
              do_shutdown();
             
              UnregisterClass(g_class_name, inst);
              CoUninitialize();

              
            return 0;
            }

            LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
            {
              
            // Only handle window destruction messages
              switch(msg) 
              {
                
            case WM_DESTROY:
                  PostQuitMessage(
            0);
                  
            break;

                
            case WM_KEYDOWN:
                    
            if(wParam == VK_ESCAPE)
                        DestroyWindow(hwnd);

                    
            break;
              }

              
            return DefWindowProc(hwnd, msg, wParam, lParam);
            }

            bool do_init(HWND hwnd)
            {
                init_d3d(
            &g_d3d, &g_device, hwnd, falsefalse);

                
            if(FAILED(load_mesh(&g_robot_mesh_container, g_device, "..\\Data\\robot.x""..\\Data\\"00)))
                    
            return FALSE;

                
            // setup a directional light

                D3DLIGHT9 light;
                ZeroMemory(
            &light, sizeof(D3DLIGHT9));

                light.Type 
            = D3DLIGHT_DIRECTIONAL;
                light.Diffuse.r 
            = light.Diffuse.g = light.Diffuse.b = light.Diffuse.a = 1.0f;
                light.Direction 
            = D3DXVECTOR3(0.0f-0.5f0.5f);

                g_device
            ->SetLight(0&light);
                g_device
            ->LightEnable(0, TRUE);

                
            return true;
            }

            void do_shutdown()
            {
                
            // free mesh data
                delete g_robot_mesh_container;
                g_robot_mesh_container 
            = NULL;

                
            // release D3D objects
                release_com(g_device);
                release_com(g_d3d);
            }

            void do_frame()
            {
                
            static DWORD start_time = timeGetTime();

                DWORD elapsed_time 
            = timeGetTime() - start_time;

                
            // bounds the time to the animation time, important!!
                elapsed_time %= (g_key_frames[3].time + 1);

                
            // dertermin which keyframe to use

                DWORD key_frame 
            = 0;

                
            for(DWORD i = 0; i < 4; i++)
                {
                    
            // if time is greater or equal to a key-frame's time then update the keyframe to use
                    if(elapsed_time >= g_key_frames[i].time)
                        key_frame 
            = i;
                }

                
            // get second key frame
                DWORD key_frame_2 = (key_frame == 3? key_frame : (key_frame + 1);

                
            // Calculate the difference in time between keyframes and calculate a scalar value to use 
                
            // for adjusting the transformations.
                DWORD time_diff = g_key_frames[key_frame_2].time - g_key_frames[key_frame].time;

                
            if(time_diff == 0)
                    time_diff 
            = 1;

                
            float scalar = (float)(elapsed_time - g_key_frames[key_frame].time) / time_diff;

                
            // calculate the difference in transformations
                D3DXMATRIX mat = D3DXMATRIX(g_key_frames[key_frame_2].mat_trans) - D3DXMATRIX(g_key_frames[key_frame].mat_trans);

                mat 
            *= scalar;    // scale the difference

                
            // add scaled transformation matrix back to 1st key frame matrix
                mat += D3DXMATRIX(g_key_frames[key_frame].mat_trans);

                g_device
            ->SetTransform(D3DTS_WORLD, &mat);

                
            // set a view transformation matrix

                D3DXMATRIX  mat_view;
                D3DXVECTOR3 eye(
            25.0f0.0f-80.0f);
                D3DXVECTOR3 at(
            25.0f0.0f0.0f);
                D3DXVECTOR3 up(
            0.0f1.0f0.0f);

                D3DXMatrixLookAtLH(
            &mat_view, &eye, &at, &up);
                g_device
            ->SetTransform(D3DTS_VIEW, &mat_view);

                
            // clear the device and start drawing the scene

                g_device
            ->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_RGBA(000255), 1.0f0);

                g_device
            ->BeginScene();

                g_device
            ->SetRenderState(D3DRS_LIGHTING, TRUE);
                draw_mesh(g_robot_mesh_container);
                g_device
            ->SetRenderState(D3DRS_LIGHTING, FALSE);

                g_device
            ->EndScene();

                g_device
            ->Present(NULL, NULL, NULL, NULL);
            }


            Runtime Snap:

            As you can see, using time−based animation is pretty simple. Even if you don't use key frames in your animation, you can still rely on these methods of using time in your own code. Now that you've seen how easy it is to use time−based animation, take a look at how easy it is to use time−based movement.

             

            download source file

             

            posted on 2008-04-15 16:27 lovedday 閱讀(454) 評論(0)  編輯 收藏 引用

            公告

            導航

            統計

            常用鏈接

            隨筆分類(178)

            3D游戲編程相關鏈接

            搜索

            最新評論

            蜜桃麻豆www久久国产精品| 久久婷婷五月综合色奶水99啪| Xx性欧美肥妇精品久久久久久| 日韩精品久久无码中文字幕| 91亚洲国产成人久久精品| 久久久青草久久久青草| 久久精品国产亚洲精品2020| 久久综合亚洲色一区二区三区| 青青草原综合久久大伊人| 性高湖久久久久久久久| 潮喷大喷水系列无码久久精品| 久久福利青草精品资源站| 99久久无码一区人妻| 久久久久国产一级毛片高清板| 欧美粉嫩小泬久久久久久久| 久久久精品人妻无码专区不卡| 久久人人爽人人爽人人片av麻烦| 亚洲中文久久精品无码| 人人狠狠综合久久亚洲婷婷| 中文字幕久久欲求不满| 伊人久久五月天| 久久国产视频网| 久久精品国产精品青草app| 久久av高潮av无码av喷吹| 精品伊人久久大线蕉色首页| 精品综合久久久久久98| 国产成人精品久久| 国产成人无码久久久精品一| 久久精品国产久精国产| 久久天天躁夜夜躁狠狠躁2022| 成人免费网站久久久| 久久久久久国产a免费观看黄色大片| 久久久无码人妻精品无码| 一本久久a久久精品综合香蕉| 久久无码人妻一区二区三区| 亚洲一区中文字幕久久| 无码国内精品久久综合88 | 久久r热这里有精品视频| 久久久午夜精品福利内容| 久久国产香蕉一区精品| 97久久国产亚洲精品超碰热|