• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            天行健 君子當自強而不息

            Controlling Players and Characters(11)

             

            Faster than the Speed of Pythagoras


            To determine the distance away from a route point, you can use the standard
            Pythagorean Theorem, but in order to speed things up, you can toss the sqrt
            operation out the door and use the sum of the squares of the lengths instead.
            To see what I mean, take a look at the following two lines of code:

            float Distance = sqrt(Length1*Length1 + Length2*Length2);
            float Distance = Length1*Length1 + Length2*Length2;

            Notice that the preceding two lines of code are almost identical, except the second
            line omits the sqrt function, making the second line execute much faster. The
            downside is that you don’t get the exact length, which really isn’t a problem.

            NOTE
            The Pythagorean Theorem is probably the most famous theorem in geometry. It states that the
            square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the
            lengths of the sides. Basically, it means that the square root of the lengths of two sides (when
            both are squared and added together) equals the length of the third side of a right triangle.

            For example, imagine that you are measuring the distance between two points and
            you want to see whether that distance is less than 40. If the coordinates of the two
            points are 0,0 and 30,20, the faster distance calculation will give you a distance of
            1,300 (because the length of the two sides are 30 and 20, respectively).

            How can you determine the distance now? By calculating the square (the number
            times itself) of the distance, that’s how! So, by taking 40 times 40, you get 1,600. By
            comparing the distance of 1,300 between the points, you can see that indeed the
            distance is less than 1,600 and, thus, less than the original distance of 40 you were
            checking.

            To get back to what I was originally talking about, you can use the faster method
            of distance calculation to determine when a character is close enough to a route
            point. Say that you want a route point considered as being touched by a character
            if that character comes within so many units from it. Utilizing the faster method of
            distance calculation, you can use the following function to determine whether that
            is the case:

            BOOL TouchedRoutePoint(
              float CharXPos, float CharZPos, // Character coordinates
              float RouteXPos, float RouteZPos, // Route point coordinates
              float Distance) // Distance to check
            {
              // Square the distance to adjust for faster distance checking
              Distance *= Distance;

              // Now calculate the distance
              float XDiff = (float)fabs(RouteXPos - CharXPos);
              float ZDiff = (float)fabs(RouteZPos - CharZPos);
              float Dist = XDiff*XDiff + ZDiff*ZDiff;

              // Return results
              if(Dist <= Distance) // Within range being checked
                return TRUE;

              return FALSE; // Out of distance range
            }

            When calling TouchedRoutePoint with the character coordinates, the coordinates of
            the route point, and the distance from the point to check, you will receive a value
            of TRUE if the character is within Distance units from the route point coordinates.
            A return value of FALSE means that the character is not within Distance units from
            the route point.

             

            Walking the Route
             

            At long last, you can put everything together and force a character to walk from
            one route point to the next. Here’s a small program that takes the five route points
            defined previously and puts a character at point one, forcing the character to walk
            from point to point forever:

            sRoutePoint Route[5] = {
              { -200.0f, -100.0f },
              { 100.0f, -300.0f },
              { 300.0f, -200.0f },
              { 200.0f, 100.0f },
              { 0.0f, 400.0f }
            };

            long NumRoutePoints = 5;

            // Character coordinates and movement variables
            float CharXPos = Route[0].XPos;
            float CharZPos = Route[0].ZPos;
            float MoveX, MoveZ;
            float Speed; // Walking speed of character

            // Start track to 2nd point
            long TargetRoutePoint = 1;
            SetupMovement(TargetRoutePoint);

            // Loop forever, moving and checking for route points reached
            while(1) {
              // Is character within range of route point?
              if(TouchedRoutePoint(TargetRoutePoint, 32.0f) == TRUE) {
                // Move to next route point
                TargetRoutePoint++;
                if(TargetRoutePoint >= NumRoutePoints)
                TargetRoutePoint = 0;
                SetupMovement(TargetRoutePoint);
              }

              // Move character
              CharXPos += MoveX;
              CharZPos += MoveZ;
            }

            // Function to check if within range of route point
            BOOL TouchedRoutePoint(long PointNum, float Distance)
            {
              Distance *= Distance;
              float XDiff = (float)fabs(CharXPos - Route[PointNum].XPos);
              float ZDiff = (float)fabs(CharZPos - Route[PointNum].ZPos);
              float Dist = XDiff*XDiff + ZDiff*ZDiff;


              if(Dist <= Distance)
                return TRUE;
             

              return FALSE;
            }

            // Function to calculate movement variables
            void SetupMovement(long PointNum)
            {
              float XDiff = (float)fabs(CharXPos - Route[PointNum].XPos);
              float ZDiff = (float)fabs(CharZPos - Route[PointNum].ZPos);
              float Length = sqrt(XDiff*XDiff + ZDiff*ZDiff);


              MoveX = (Route[PointNum].XPos - CharXPos) / Length * Speed;
              MoveZ = (Route[PointNum].ZPos - CharZPos) / Length * Speed;
            }


            posted on 2007-11-14 15:37 lovedday 閱讀(207) 評論(0)  編輯 收藏 引用

            公告

            導航

            統(tǒng)計

            常用鏈接

            隨筆分類(178)

            3D游戲編程相關鏈接

            搜索

            最新評論

            精品久久人人爽天天玩人人妻| 久久国产精品国产自线拍免费| 国产精品久久久天天影视香蕉| 国内精品久久久久久麻豆 | 国产精品一久久香蕉国产线看| 丰满少妇高潮惨叫久久久| 日本三级久久网| 国产A三级久久精品| 亚洲乱亚洲乱淫久久| 午夜天堂av天堂久久久| 久久精品国产亚洲7777| 久久丫精品国产亚洲av不卡 | 麻豆久久久9性大片| 国内精品久久久久久野外| 2019久久久高清456| 色偷偷888欧美精品久久久| 综合久久一区二区三区| 91秦先生久久久久久久| 亚洲国产另类久久久精品黑人 | 中文字幕成人精品久久不卡 | 超级碰久久免费公开视频| 一本色道久久88—综合亚洲精品| 91精品国产高清久久久久久国产嫩草 | 亚州日韩精品专区久久久| 亚洲国产精品一区二区久久hs| 亚洲综合精品香蕉久久网| 久久精品国产精品亚洲| 久久久国产精品福利免费| 97久久国产综合精品女不卡| 久久国产免费| 久久青青草原精品国产不卡| 品成人欧美大片久久国产欧美... 品成人欧美大片久久国产欧美 | 久久99国产乱子伦精品免费| 久久有码中文字幕| 午夜视频久久久久一区| 精品人妻伦一二三区久久| 麻豆一区二区99久久久久| 久久精品国产99久久久古代| 欧美精品国产综合久久| 亚洲va中文字幕无码久久不卡| 99久久夜色精品国产网站|