• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            雁過(guò)無(wú)痕

            問(wèn)題

            1 按順時(shí)針?lè)较驑?gòu)建一個(gè)m * n的螺旋矩陣(或按順時(shí)針?lè)较蚵菪L問(wèn)一個(gè)m * n的矩陣):

            2 在不構(gòu)造螺旋矩陣的情況下,給定坐標(biāo)ij值求其對(duì)應(yīng)的值f(i, j)。

            比如對(duì)11 * 7矩陣, f(6, 0) = 27  f(6, 1) = 52 f(6, 3) = 76  f(6, 4) = 63

             

             

            構(gòu)建螺旋矩陣

            對(duì)m * n 矩陣,最先訪問(wèn)最外層的m * n的矩形上的元素,接著再訪問(wèn)里面一層的 (m - 2) * (n - 2) 矩形上的元素…… 最后可能會(huì)剩下一些元素,組成一個(gè)點(diǎn)或一條線(見(jiàn)圖1)。

            對(duì)第i個(gè)矩形(i=0, 1, 2 …),4個(gè)頂點(diǎn)的坐標(biāo)為:

            (i, i) ----------------------------------------- (i, n–1-i)

            |                                                    |

            |                                                    |

            |                                                    |

            (m-1-i, i) ----------------------------------------- (m-1-i, n-1-i) 

            要訪問(wèn)該矩形上的所有元素,只須用4個(gè)for循環(huán),每個(gè)循環(huán)訪問(wèn)一個(gè)點(diǎn)和一邊條邊上的元素即可(見(jiàn)圖1)。另外,要注意對(duì)最終可能剩下的1 * k 或 k * 1矩陣再做個(gè)特殊處理。

             

            代碼:

            inline void act(int t) { printf("%3d ", t); }

             

             const int small = col < row ? col : row;

             const int count = small / 2;

             for (int i = 0; i < count; ++i) {

                const int C = col - 1 - i;

                const int R = row - 1 - i;

                for (int j = i; j < C; ++j) act(arr[i][j]);

                for (int j = i; j < R; ++j) act(arr[j][C]);

                for (int j = C; j > i; --j) act(arr[R][j]);

                for (int j = R; j > i; --j) act(arr[j][i]);

             }

             

             if (small & 1) {

                const int i = count;

                if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);

                else for (int j = i; j < row - i; ++j) act(arr[j][i]);

            }

             

            如果只是構(gòu)建螺旋矩陣的話,稍微修改可以實(shí)現(xiàn)4個(gè)for循環(huán)獨(dú)立:

             

             const int small = col < row ? col : row;

             const int count = small / 2;

             for (int i = 0; i < count; ++i) {

                const int C = col - 1 - i;

                const int R = row - 1 - i;

                const int cc = C - i;

                const int rr = R - i;

                const int s = 2 * i * (row + col - 2 * i) + 1;

                for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;

                for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;

                for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;

                for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;

             }

             

             if (small & 1) {

                const int i = count;

                int k = 2 * i * (row + col - 2 * i) + 1;

                if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;

                else for (int j = i; j < row - i; ++j) arr[j][i] = k++;

             }

             

            關(guān)于s的初始值取 2 * i * (row + col - 2 * i) + 1請(qǐng)參考下一節(jié)。

             

            由于C++的二維數(shù)組是通過(guò)一維數(shù)組實(shí)現(xiàn)的。二維數(shù)組的實(shí)現(xiàn)一般有下面三種:

            靜態(tài)分配足夠大的數(shù)組;

            動(dòng)態(tài)分配一個(gè)長(zhǎng)為m*n的一維數(shù)組;

            動(dòng)態(tài)分配m個(gè)長(zhǎng)為n的一維數(shù)組,并將它們的指針存在一個(gè)長(zhǎng)為m的一維數(shù)組。

            二維數(shù)組的不同實(shí)現(xiàn)方法,對(duì)函數(shù)接口有很大影響。

             

             

             

             

            給定坐標(biāo)直接求值f(x, y)

             

            如前面所述,對(duì)第i個(gè)矩形(i=0, 1, 2 …),4個(gè)頂點(diǎn)的坐標(biāo)為:

            (i, i) ----------------------------------------- (i, n–1-i)

            |                                                    |

            |                                                    |

            |                                                    |

            (m-1-i, i) ----------------------------------------- (m-1-i, n-1-i) 

            對(duì)給定的坐標(biāo)(x,y),如果它落在某個(gè)這類矩形上,顯然其所在的矩形編號(hào)為:

            k = min{x, y, m-1-x, n-1-y}

            m*n矩陣刪除訪問(wèn)第k個(gè)矩形前所訪問(wèn)的所有元素后,可得到(m-2*k)*(n-2*k)矩陣,因此已訪問(wèn)的元素個(gè)數(shù)為:m*n-(m-2*k)*(n-2*k)=2*k*(m+n-2*k),因而 (k,k)對(duì)應(yīng)的值為:

            T(k) = 2*k*(m+n-2*k)+ 1

             

            對(duì)某個(gè)矩形,設(shè)點(diǎn)(x, y)到起始點(diǎn)(k,k)的距離d = x-k + y-k = x+y-2*k

            ① 向右和向下都只是橫坐標(biāo)或縱坐標(biāo)增加1,這兩條邊上的點(diǎn)滿足f(x, y) = T(k) + d

            ② 向左和向下都只是橫坐標(biāo)或縱坐標(biāo)減少1,這兩條邊上的點(diǎn)滿足f(x, y) = T(k+1) - d

             

            如果給定坐標(biāo)的點(diǎn)(x, y),不在任何矩形上,則它在一條線上,仍滿足f(x, y) = T(k) + d

             

            int getv(int row, int col, int max_row, int max_col) // row < max_row, col < max_col

            {

             int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));

             int distance = row + col - level * 2;

             int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

             if (row == level || col == max_col - 1 - level ||

            (max_col < max_row && level * 2 + 1 == max_col))

               return start_value + distance;

             int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

             return next_value - distance;

            }

             

            特別說(shuō)明

            上面的討論都是基于m*n矩陣的,對(duì)于特例n*n矩陣,可以做更多的優(yōu)化。比如構(gòu)建螺旋矩陣,如果n為奇數(shù),則矩陣可以拆分為幾個(gè)矩形加上一個(gè)點(diǎn)。前面的條件判斷可以優(yōu)化為:

            if (small & 1) act[count][count];

            甚至可以調(diào)整4個(gè)for循環(huán)的遍歷元素個(gè)數(shù)(前面代碼,每個(gè)for循環(huán)遍歷n-1-2*i個(gè)元素,可以調(diào)整為:n-2*i,n-1-2*i, n-1-2*i,n-2-2*i)從而達(dá)到省略if判斷。

             

             

             

            測(cè)試代碼

            代碼1

             

            //螺旋矩陣,給定坐標(biāo)直接求值 by flyinghearts

            //www.cnblogs.com/flyinghearts

            #include<iostream>

            #include<algorithm>

            using std::min;

            using std::cout;

             

            /*

            int getv2(int row, int col, int max_row, int max_col) // row < max_row, col < max_col

            {

             int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));

             int distance = row + col - level * 2;

             int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

             if (row == level || col == max_col - 1 - level) return start_value + distance;

             //++level; int next_value = 2 * level * (max_row + max_col - 2 * level) + 1;

             int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

             if (next_value > max_col * max_row) return start_value + distance;

             return next_value - distance;

            }

            */

             

            int getv(int row, int col, int max_row, int max_col) // row < max_row, col < max_col

            {

             int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));

             int distance = row + col - level * 2;

             int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

             if (row == level || col == max_col - 1 - level || (max_col < max_row && level * 2 + 1 == max_col))

                return start_value + distance;

             //++level; int next_value = 2 * level * (max_row + max_col - 2 * level) + 1;

             int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

             return next_value - distance;

            }

             

             

            int main()

            {

             

             int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

             const int sz = sizeof(test) / sizeof(test[0]);

             for (int k = 0; k < sz; ++k) {

                int M = test[k][0];

                int N = test[k][1];  

                for (int i = 0; i < M; ++i) {

                  for (int j = 0; j < N; ++j)

                    cout.width(4), cout << getv(i, j, M, N) << " ";

                 cout << "\n"; 

                }

                cout << "\n";

             }

            }

             

             

             

             

            代碼2:

            //螺旋矩陣 by flyinghearts#qq.com

            //www.cnblogs.com/flyinghearts

            #include<iostream>

             

             

            int counter = 0;

             

            inline void act(int& t)

            {

             //std::cout.width(3), std::cout << t;

             t = ++::counter;

            }

             

            void act_arr(int *arr, int row, int col, int max_col) //col < max_col

            {

             const int small = col < row ? col : row;

             const int count = small / 2;

             int *p = arr;

             for (int i = 0; i < count; ++i) {

                const int C = col - 1 - 2 * i;

                const int R = row - 1 - 2 * i;

                for (int j = 0; j < C; ++j) act(*p++);

                for (int j = 0; j < R; ++j) act(*p), p += max_col;

                for (int j = 0; j < C; ++j) act(*p--);

                for (int j = 0; j < R; ++j) act(*p), p -= max_col;

                p += max_col + 1;

             }

             

             if (small & 1) {

                const int i = count;

                if (row <= col) for (int j = 0; j < col - 2 * i; ++j) act(*p++);

                else for (int j = 0; j < row - 2 * i; ++j) act(*p), p += max_col;

             }

            }

             

             

            void act_arr(int* arr[], int row, int col)

            {

             const int small = col < row ? col : row;

             const int count = small / 2;

             for (int i = 0; i < count; ++i) {

                const int C = col - 1 - i;

                const int R = row - 1 - i;

                for (int j = i; j < C; ++j) act(arr[i][j]);

                for (int j = i; j < R; ++j) act(arr[j][C]);

                for (int j = C; j > i; --j) act(arr[R][j]);

                for (int j = R; j > i; --j) act(arr[j][i]);

             }

             

             if (small & 1) {

                const int i = count;

                if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);

                else for (int j = i; j < row - i; ++j) act(arr[j][i]);

             }

            }

             

            void act_arr_2(int* arr[], int row, int col)

            {

             const int small = col < row ? col : row;

             const int count = small / 2;

             for (int i = 0; i < count; ++i) {

                const int C = col - 1 - i;

                const int R = row - 1 - i;

                const int cc = C - i;

                const int rr = R - i;

                const int s = 2 * i * (row + col - 2 * i) + 1;

                for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;

                for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;

                for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;

                for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;

             }

             

             if (small & 1) {

                const int i = count;

                int k = 2 * i * (row + col - 2 * i) + 1;

                if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;

                else for (int j = i; j < row - i; ++j) arr[j][i] = k++;

             }

            }

             

            void print_arr(int *arr, int row, int col, int max_col) //col < max_col

            {

             for (int i = 0, *q = arr; i < row; ++i, q += max_col) {

                for (int *p = q; p < q + col; ++p)

                 std::cout.width(4), std::cout << *p;

                std::cout << "\n";

             }

             std::cout << "\n";

            }

             

            void print_arr(int* a[], int row, int col) //col < max_col

            {

             for (int i = 0; i < row; ++i) {

                for (int j = 0; j < col; ++j)

                 std::cout.width(4), std::cout << a[i][j];

                std::cout << "\n"; 

             }  

             std::cout << "\n";

            }

             

             

            void test_1()

            {

             const int M = 25;

             const int N = 25;

             int a[M][N];

             int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

             const int sz = sizeof(test) / sizeof(test[0]);

             std::cout << "Test 1:\n";

             for (int i = 0; i < sz; ++i) {

                int row = test[i][0];

                int col = test[i][1];

                if (row < 0 || row > M) row = 3;

                if (col < 0 || col > N) col = 3;

                ::counter = 0;

                act_arr(&a[0][0], row, col, N);

                print_arr(&a[0][0], row, col, N);

             }

            }

             

            void test_2()

            {

             int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

             const int sz = sizeof(test) / sizeof(test[0]);

             std::cout << "Test 2:\n";

             for (int i = 0; i < sz; ++i) {

                int row = test[i][0]; 

                int col = test[i][1]; 

                int **arr = new int*[row];

                for (int i = 0; i < row; ++i) arr[i] = new int[col];

                ::counter = 0;

                act_arr(arr, row, col);

                print_arr(arr, row, col);

                for (int i = 0; i < row; ++i) delete[] arr[i];

                delete[] arr; 

             }

            }

             

             

            int main()

            {

             test_1();

             test_2();

            }

             

            posted on 2010-12-23 23:09 flyinghearts 閱讀(4960) 評(píng)論(3)  編輯 收藏 引用 所屬分類: 算法

            評(píng)論

            # re: 螺旋矩陣 2010-12-24 10:10 _飛寒
            寒~ 這不是我們學(xué)校的賽題么。。  回復(fù)  更多評(píng)論
              

            # re: 螺旋矩陣 2010-12-25 11:20 flyinghearts
            @_飛寒
            那真湊巧  回復(fù)  更多評(píng)論
              

            # re: 螺旋矩陣 2014-08-12 13:57 121e1212
            int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

            const int sz = sizeof(test) / sizeof(test[0]);

            std::cout << "Test 2:\n";

            for (int i = 0; i < sz; ++i) {

            int row = test[i][0];

            int col = test[i][1];

            int **arr = new int*[row];

            for (int i = 0; i < row; ++i) arr[i] = new int[col];
              回復(fù)  更多評(píng)論
              

            久久久久亚洲AV无码麻豆| 久久精品中文字幕第23页| 午夜精品久久影院蜜桃| 嫩草影院久久国产精品| 国产精品久久久久久福利69堂| 精品久久久噜噜噜久久久 | 久久精品亚洲乱码伦伦中文| 要久久爱在线免费观看| 欧美日韩中文字幕久久久不卡| 亚洲国产精品无码久久久不卡 | 亚洲天堂久久精品| 91精品免费久久久久久久久| 中文字幕久久亚洲一区| 91久久精品91久久性色| 综合久久久久久中文字幕亚洲国产国产综合一区首 | 亚洲精品午夜国产VA久久成人| 日本精品久久久中文字幕| 97视频久久久| 日韩久久久久久中文人妻| 97久久超碰成人精品网站| 欧美一级久久久久久久大片| 久久久久女人精品毛片| 亚洲人AV永久一区二区三区久久| 国产Av激情久久无码天堂| 亚洲国产婷婷香蕉久久久久久| 国产精品久久久久aaaa| 亚洲AV无码1区2区久久| 久久噜噜久久久精品66| 亚洲国产另类久久久精品小说| 久久精品中文字幕有码| 精品999久久久久久中文字幕| 久久久久国产视频电影| 97久久精品午夜一区二区| 国内精品久久久久影院薰衣草 | 久久综合久久鬼色| 9999国产精品欧美久久久久久| 麻豆一区二区99久久久久| 久久天天躁夜夜躁狠狠躁2022| 好属妞这里只有精品久久| 亚洲午夜久久久久久噜噜噜| 亚洲国产高清精品线久久|