青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉(zhuǎn)化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

假設(shè),若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數(shù)已經(jīng)滿足degree <= k,那么度限制生成樹就已經(jīng)得到了。因為不可能有比它權(quán)值和更小的生成樹了,并且點的度數(shù)滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數(shù)degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規(guī)定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應(yīng)該怎樣刪邊呢?假設(shè),規(guī)定點的度數(shù)為t,那么就有t根與規(guī)定點相連的子樹T1T2、……、Tt,若刪去Ti與規(guī)定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經(jīng)過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規(guī)定點的度數(shù)減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權(quán)值減去“刪”的邊的權(quán)值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現(xiàn)將規(guī)定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權(quán)值,在其中不斷更新樹的權(quán)值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進行標記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(978) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應(yīng)該怎么求呀/.  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美日韩第一区日日骚| 亚洲一区欧美一区| 亚洲女女女同性video| 亚洲精品网站在线播放gif| 欧美在线播放一区| 亚洲欧美bt| 欧美深夜影院| 亚洲理伦电影| 亚洲免费观看高清在线观看 | 一本色道久久综合亚洲精品小说| 国产精品99久久久久久人| 欧美在线亚洲综合一区| 午夜精品在线观看| 国产精品久久久99| 亚洲毛片播放| 亚洲视频在线观看视频| 欧美国产综合视频| 免费欧美视频| 国产亚洲精品aa午夜观看| 亚洲午夜电影| 香蕉尹人综合在线观看| 国产精品欧美久久| 亚洲欧美日本日韩| 欧美在线观看视频在线| 国产农村妇女精品| 欧美亚洲专区| 久久这里只有| 亚洲国产精品va在线看黑人| 久久一区欧美| 欧美韩日一区二区三区| 91久久久亚洲精品| 欧美风情在线| 日韩一级大片在线| 性欧美1819sex性高清| 国产欧美日韩不卡免费| 性高湖久久久久久久久| 久久精品国产91精品亚洲| 国产亚洲永久域名| 久久亚洲不卡| 91久久国产自产拍夜夜嗨| 99精品欧美一区| 欧美日韩一区二区在线观看视频| 一区二区三区欧美在线| 欧美日韩三级在线| 亚洲综合二区| 久久先锋影音| 在线视频精品一区| 欧美午夜视频在线| 午夜激情亚洲| 欧美激情视频网站| 亚洲影院免费观看| 国内精品国产成人| 欧美高清视频| 午夜视频在线观看一区二区三区| 99精品欧美一区| 国产精品久久久久毛片软件| 久久er99精品| 日韩性生活视频| 久久精品国产免费| 日韩视频在线观看| 国产亚洲一级高清| 欧美日韩精品一区二区在线播放 | 亚洲精品一区二区三区99| 亚洲在线一区二区三区| 国产午夜精品全部视频播放| 久久亚洲美女| 亚洲一级网站| 欧美激情视频网站| 久久精品噜噜噜成人av农村| 99热在这里有精品免费| 国产一区二区三区高清在线观看| av不卡在线观看| 另类激情亚洲| 久久动漫亚洲| 在线一区欧美| 亚洲卡通欧美制服中文| 韩国欧美一区| 国产欧美精品一区二区色综合| 99视频精品全国免费| 欧美成人免费视频| 久久免费视频在线| 亚洲五月婷婷| 日韩午夜免费视频| 国产日本欧美视频| 国产精品进线69影院| 欧美国产欧美亚州国产日韩mv天天看完整 | 欧美伊人久久久久久午夜久久久久| 欧美精品在线免费播放| 久久久久久亚洲精品中文字幕 | 国产精品日本精品| 欧美aⅴ99久久黑人专区| 欧美在线观看一区二区三区| 一区二区三欧美| 亚洲人成人77777线观看| 免费成人av| 蜜桃av噜噜一区| 久久久噜噜噜久久| 久久精品91久久久久久再现| 亚洲欧美视频在线观看视频| 日韩系列欧美系列| 亚洲另类春色国产| 9国产精品视频| 亚洲美女精品成人在线视频| 亚洲欧洲偷拍精品| 亚洲区欧美区| 亚洲精品视频在线看| 亚洲精品在线一区二区| 亚洲美女毛片| 妖精成人www高清在线观看| 亚洲剧情一区二区| 在线视频日韩精品| 亚洲视频在线一区观看| 亚洲一区观看| 欧美在线视频免费观看| 久久经典综合| 久久这里只有| 亚洲第一福利视频| 亚洲美女av在线播放| 亚洲九九九在线观看| 亚洲视频免费在线| 亚洲女性裸体视频| 久久久久久久999精品视频| 久久久久久久97| 欧美高清免费| 欧美日韩在线不卡一区| 国产精品日韩在线观看| 国一区二区在线观看| 亚洲电影av在线| 这里只有精品视频| 欧美一区视频在线| 久久久一二三| 亚洲激情视频| 亚洲欧美日韩在线| 久久久天天操| 欧美日韩1080p| 国产一区二区日韩精品| 亚洲激情亚洲| 一区二区三区欧美在线| 欧美一级视频免费在线观看| 久久久人成影片一区二区三区观看| 亚洲电影免费观看高清| 亚洲精品综合久久中文字幕| 亚洲专区国产精品| 久久久国产91| 亚洲日本黄色| 久久国产精品久久久久久久久久| 亚洲久久一区| 久久国产加勒比精品无码| 女生裸体视频一区二区三区| 国产精品久久国产精麻豆99网站| 狂野欧美一区| 国产精品丝袜久久久久久app| 免费不卡中文字幕视频| 国产精品美女www爽爽爽视频| 欧美精品一区在线播放| 欧美特黄一级大片| 怡红院精品视频| 午夜精品久久久久久久99水蜜桃| 99re亚洲国产精品| 久久亚洲春色中文字幕| 一本色道久久88亚洲综合88| 久久国产欧美| 国产精品v欧美精品v日韩精品| 欧美精品一区二区三区在线播放| 久久综合九色九九| 国产精品免费视频xxxx| 亚洲欧洲精品一区二区三区波多野1战4 | 狠狠色综合网站久久久久久久| 亚洲一级电影| 免费人成精品欧美精品| 国产一区二区精品丝袜| 亚洲字幕一区二区| 亚洲区欧美区| 美女黄色成人网| 狠狠网亚洲精品| 久久国产精品久久w女人spa| 99这里只有精品| 欧美精品在线观看91| 在线观看亚洲| 可以看av的网站久久看| 午夜日本精品| 国产香蕉97碰碰久久人人| 小嫩嫩精品导航| 亚洲综合成人婷婷小说| 国产精品高潮在线| 一本色道久久88亚洲综合88| 亚洲电影免费观看高清完整版在线| 男人的天堂亚洲在线| 欧美在线播放一区| 国产精品一香蕉国产线看观看| 欧美视频免费| 亚洲一区中文字幕在线观看| 亚洲毛片一区| 国产精品高清免费在线观看| 99国产精品国产精品久久| 亚洲人成人77777线观看| 欧美日韩性视频在线| 亚洲香蕉在线观看| 亚洲伦理自拍| 欧美午夜免费影院|