• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進(jìn)步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

            解題報告

             

            題目來源:

            PKU 1505 Copying Books

             

            算法分類:

            DP

             

            原文:

            Copying Books

            Time Limit: 3000MS


            Memory Limit: 10000K

            Total Submissions: 1806


            Accepted: 404

            Description

            Before the invention of book-printing, it was very hard to make a copy of a book. All the contents had to be re-written by hand by so called scribers. The scriber had been given a book and after several months he finished its copy. One of the most famous scribers lived in the 15th century and his name was Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was very annoying and boring. And the only way to speed it up was to hire more scribers.

            Once upon a time, there was a theater ensemble that wanted to play famous Antique Tragedies. The scripts of these plays were divided into many books and actors needed more copies of them, of course. So they hired many scribers to make copies of these books. Imagine you have m books (numbered 1, 2 ... m) that may have different number of pages (p1, p2 ... pm) and you want to make one copy of each of them. Your task is to divide these books among k scribes, k <= m. Each book can be assigned to a single scriber only, and every scriber must get a continuous sequence of books. That means, there exists an increasing succession of numbers 0 = b0 < b1 < b2, ... < bk-1 <= bk = m such that i-th scriber gets a sequence of books with numbers between bi-1+1 and bi. The time needed to make a copy of all the books is determined by the scriber who was assigned the most work. Therefore, our goal is to minimize the maximum number of pages assigned to a single scriber. Your task is to find the optimal assignment.

            Input

            The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case consists of exactly two lines. At the first line, there are two integers m and k, 1 <= k <= m <= 500. At the second line, there are integers p1, p2, ... pm separated by spaces. All these values are positive and less than 10000000.

            Output

            For each case, print exactly one line. The line must contain the input succession p1, p2, ... pm divided into exactly k parts such that the maximum sum of a single part should be as small as possible. Use the slash character ('/') to separate the parts. There must be exactly one space character between any two successive numbers and between the number and the slash.

            If there is more than one solution, print the one that minimizes the work assigned to the first scriber, then to the second scriber etc. But each scriber must be assigned at least one book.

            Sample Input

            2

            9 3

            100 200 300 400 500 600 700 800 900

            5 4

            100 100 100 100 100

            Sample Output

            100 200 300 400 500 / 600 700 / 800 900

            100 / 100 / 100 / 100 100

            Source

            Central Europe 1998

             

             

            中文描述:

            題目大意是給你m1…m)本書,每本書有Pm頁,用kk<=m)個員工來復(fù)印這些書。每本書只能分配給一個員工來復(fù)印,并且每個員工必須復(fù)印一段連續(xù)的書籍,每個員工復(fù)印的時間取決于所復(fù)印書籍的總頁數(shù)。讓你給出相應(yīng)的分配,使得分配給員工的書籍頁數(shù)的最大值盡量小。注意,如果有多種分配的方案,使得第一個員工的書籍頁數(shù)盡量少,其次是第二個、第三個……以此類推。

             

            題目分析:

            我們可以從后往前推,最后一個員工,也就是第k個員工,他至少要復(fù)印第m本書,至多可以復(fù)印第k本到第m本(因為至少要分配給前k-1個員工每人一本書)。假設(shè),第k名員工復(fù)制第ik<=i<=m)本書到第m本書,那么,所有員工復(fù)印書籍的最小時間就為第k名員工所需的時間以及前k-1名員工復(fù)制前i-1本書所需最小時間的較大的那個時間。這樣,問題的規(guī)模就從k個員工復(fù)印m本書減小到了k-1個員工復(fù)印i-1本書,而且求解過程中會不斷遇到前a個員工復(fù)印前b本書的最小時間。為了減小問題的規(guī)模以及記錄重復(fù)子問題的解,就可以用DP。

            但僅僅算出最小時間的不夠的,還要給出分配的方案,這個稍微有點繁瑣。因為題目中說,如果有多種最優(yōu)的分配方案,應(yīng)該讓前面的員工分配的頁數(shù)盡量少。那么,可以從后推,在當(dāng)前的員工所復(fù)印的書籍頁數(shù)沒有超過最大頁數(shù)的情況下,讓其復(fù)印的頁數(shù)最大化。如果超過了最大頁數(shù),就把這本書分配給前一名員工。最后再按順序?qū)⒎峙浣Y(jié)果輸出出來。

             

            代碼:

            #include <cstdio>

            #include <climits>

            #include <cstring>

             

            const int MAX = 505;

            int book[MAX];

            __int64 total[MAX];                        //1~n本書的頁數(shù)

            int k, m;

            __int64 f[MAX][MAX];                  //f[i][j] = k 表示前i個人復(fù)制前j本書所需最少時間是k

            __int64 max;

            void Input ()

            {

                            scanf("%d%d", &m, &k);

                            int i;

                            for (i=1; i<=m; i++)

                                            scanf("%d", &book[i]);

            }

             

            __int64 Sum (int s, int e)                                               //s本書到第e本書的總頁數(shù)

            {

                            return (total[e] - total[s-1]);

            }

             

            __int64 Max (__int64 a, __int64 b)

            {

                            return ( a>b?a:b );

            }

             

            __int64 Min (int x, int y)                                //x個人復(fù)制前y本書所需的最少時間        x<=y

            {

            //考慮特殊情況

                            if ( f[x][y] != -1 )

                                            return f[x][y];

                            if ( y == 0 )

                                            return ( f[x][y] = 0 );

                            if ( x == 0 )

                                            return ( f[x][y] = INT_MAX );

             

                            int i;

                            __int64 temp;

                            f[x][y] = INT_MAX;

                            for (i=x-1; i<y; i++)

                            {

            //x個人復(fù)制第i+1到第y本書與前x-1個人復(fù)制前i本書的時間較大的時間

                                            temp = Max( Min(x-1, i), Sum(i+1, y) );                 

                                            if ( temp < f[x][y] )

                                            {

                                                            f[x][y] = temp;

                                            }

                            }

                            return f[x][y];

            }

             

            void Output ()

            {

                            int i, p;

                            __int64 temp;

                            int slash[MAX];

                            max = f[k][m];

                            memset(slash, 0, sizeof(slash));

                            temp = 0;

                            p = k;

                            for (i=m; i>0; i--)

                            {

                                            //讓后面的員工盡量復(fù)印最多的書籍

                                            if ( temp + book[i] > max || i < p )

                                            {

                                                            slash[i] = 1;

                                                            temp = book[i];

                                                            p --;

                                            }

                                            else

                                            {

                                                            temp += book[i];

                                            }

                            }

             

                            for (i=1; i<=m; i++)

                            {

                                            printf("%d", book[i]);

                                            if ( slash[i] == 1 )

                                                            printf(" / ");

                                            else if ( i != m )

                                                            printf(" ");

                            }

                            printf("\n");

            }

             

            void Solve ()

            {

                            int i, j;

                            //預(yù)處理書籍頁數(shù)的和

                            total[0] = 0;

                            for (i=1; i<=m; i++)

                                            total[i] = total[i-1] + book[i];

             

                            memset(f, -1, sizeof(f));

                           

                            Min(k, m);

                           

                            Output();

            }

             

            int main ()

            {

                            int test;

                            scanf("%d", &test);

                            while ( test-- )

                            {

                                            Input ();

                                            Solve ();

                            }

             

                            return 0;

            }

             

             

            程序分析與心得:

            時間復(fù)雜度O(n2),空間復(fù)雜度O(n2)

            在用記憶化搜索解決DP問題時,往往比較符合人的思維,容易想到模型,編程比較簡單。在解題過程中,除了可以按照常理順著推,也可以嘗試逆向思維,從最后的狀態(tài)倒著推,這樣可以使問題想得更加透徹,有比較好的效果。

            posted on 2008-03-10 15:11 quxiao 閱讀(560) 評論(0)  編輯 收藏 引用 所屬分類: ACM
            青草久久久国产线免观| 亚洲欧美日韩精品久久| 国产成人精品久久一区二区三区av | 99麻豆久久久国产精品免费| 97久久久精品综合88久久| 伊人丁香狠狠色综合久久| 亚洲国产一成久久精品国产成人综合| 久久精品蜜芽亚洲国产AV| 天天爽天天爽天天片a久久网| 丁香色欲久久久久久综合网| 国产女人aaa级久久久级| 欧美精品乱码99久久蜜桃| 国产精品亚洲美女久久久| 五月丁香综合激情六月久久| 久久这里的只有是精品23| 久久国产成人午夜aⅴ影院| 国产成人久久激情91| 久久亚洲日韩看片无码| 9999国产精品欧美久久久久久| 久久综合88熟人妻| 亚洲国产精品无码久久一线| 久久久久亚洲?V成人无码| 午夜精品久久久久久影视777| 日本三级久久网| 久久国产精品99精品国产987| www.久久热| 国产人久久人人人人爽| 欧美久久综合性欧美| 久久AV高清无码| 久久99精品久久久久久动态图 | 久久青青草原精品国产不卡| 国内精品久久久久影院网站| 精品免费久久久久久久| 久久精品99久久香蕉国产色戒| 无码国产69精品久久久久网站| 亚洲va久久久久| 国产成人无码精品久久久性色 | 国产巨作麻豆欧美亚洲综合久久 | 一本一本久久a久久精品综合麻豆| 久久国产精品视频| 日韩一区二区三区视频久久|