• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進(jìn)步一點(diǎn)點(diǎn)!

              C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評(píng)論 :: 0 Trackbacks
            題目來(lái)源:

                            PKU 2201 Cartesian Tree

            分類:

                            RMQ

            原文:

             

            Cartesian Tree

            Time Limit: 10000MS


            Memory Limit: 65536K

            Total Submissions: 1196


            Accepted: 423

            Case Time Limit: 2000MS

            Description

            Let us consider a special type of a binary search tree, called a cartesian tree. Recall that a binary search tree is a rooted ordered binary tree, such that for its every node x the following condition is satisfied: each node in its left subtree has the key less then the key of x, and each node in its right subtree has the key greater then the key of x.
            That is, if we denote left subtree of the node x by L(x), its right subtree by R(x) and its key by kx then for each node x we have

            • if y L(x) then ky < kx
            • if z R(x) then kz > kx


            The binary search tree is called cartesian if its every node x in addition to the main key kx also has an auxiliary key that we will denote by ax, and for these keys the heap condition is satisfied, that is

            • if y is the parent of x then ay < ax


            Thus a cartesian tree is a binary rooted ordered tree, such that each of its nodes has a pair of two keys (k, a) and three conditions described are satisfied.
            Given a set of pairs, construct a cartesian tree out of them, or detect that it is not possible.

            Input

            The first line of the input file contains an integer number N -- the number of pairs you should build cartesian tree out of (1 <= N <= 50 000). The following N lines contain two numbers each -- given pairs (ki, ai). For each pair |ki|, |ai| <= 30 000. All main keys and all auxiliary keys are different, i.e. ki != kj and ai != aj for each i != j.

            Output

            On the first line of the output file print YES if it is possible to build a cartesian tree out of given pairs or NO if it is not. If the answer is positive, on the following N lines output the tree. Let nodes be numbered from 1 to N corresponding to pairs they contain as they are given in the input file. For each node output three numbers -- its parent, its left child and its right child. If the node has no parent or no corresponding child, output 0 instead.
            The input ensure these is only one possible tree.

            Sample Input

            7

            5 4

            2 2

            3 9

            0 5

            1 3

            6 6

            4 11

            Sample Output

            YES

            2 3 6

            0 5 1

            1 0 7

            5 0 0

            2 4 0

            1 0 0

            3 0 0

            Source

            Northeastern Europe 2002, Northern Subregion

             

             

             

             

            中文描述:

                            有一種二叉樹(shù),叫笛卡爾樹(shù),樹(shù)的節(jié)點(diǎn)有兩個(gè)值:kak值滿足二叉排序樹(shù)的性質(zhì),a值滿足最小堆的性質(zhì)。即如果某個(gè)根節(jié)點(diǎn)root有兩個(gè)子節(jié)點(diǎn)leftright,那么left.k < root.k < right.k,且root.a < left.aroot.a < right.a。給你N(1 <= N <= 50 000)個(gè)節(jié)點(diǎn),問(wèn)你是否可以構(gòu)造出一棵笛卡爾樹(shù)。

             

            題目分析與算法模型

                            一開(kāi)始,自己是想根據(jù)最小堆的性質(zhì),擁有最小a值的那個(gè)節(jié)點(diǎn)一定是樹(shù)的根,接著再找兩個(gè)次小a值的節(jié)點(diǎn),它們必然是根的兩個(gè)子節(jié)點(diǎn),再根據(jù)k值決定節(jié)點(diǎn)是左兒子還是右兒子,然后再以此類推…………,但是在下一層就不對(duì)了。因?yàn)椴⒉皇菢?shù)的下一層節(jié)點(diǎn)的a值一定比上一層節(jié)點(diǎn)的a值大(它們不一定在同一棵子樹(shù))。

                            可以換一個(gè)思維,把注意力放在k值上。要知道,如果對(duì)一顆二叉排序樹(shù)進(jìn)行前序搜索,k值是從小到大排序的。如果某個(gè)節(jié)點(diǎn)是根,那么它左邊的節(jié)點(diǎn)就構(gòu)成左子樹(shù),它右邊的節(jié)點(diǎn)就構(gòu)成右子樹(shù)。現(xiàn)在,那個(gè)根節(jié)點(diǎn)是哪一個(gè)?就是那個(gè)a值最小的節(jié)點(diǎn)!所以,我們可以對(duì)k值進(jìn)行排序,現(xiàn)在整個(gè)區(qū)間內(nèi)找到a值最小的節(jié)點(diǎn),他就是根。接著再在左邊和右邊的區(qū)間內(nèi)各找一個(gè)a值最小的節(jié)點(diǎn),看它們的節(jié)點(diǎn)的k值與根節(jié)點(diǎn)的k值是否滿足二叉排序樹(shù)的性質(zhì),如果滿足,就用相同的方法在左、右區(qū)間遞歸建立子樹(shù);如果不滿足,表示無(wú)法構(gòu)成笛卡爾樹(shù)。


                            接下來(lái)的問(wèn)題就是,如何在一區(qū)間里找到最小的a值?最容易想到的就是O(n)復(fù)雜度的線性查找,但在此題中,N最大為50000,并且當(dāng)在一個(gè)較大區(qū)間內(nèi)查找到一個(gè)最值后,又要在一個(gè)較小的區(qū)間內(nèi)查找另一個(gè)最值,一些節(jié)點(diǎn)被查找了多次,造成時(shí)間的浪費(fèi)。那么,怎么高效的進(jìn)行多次的區(qū)間查詢呢?RMQ是一個(gè)不錯(cuò)的解決方法。大致思想是:先對(duì)區(qū)間內(nèi)的數(shù)進(jìn)行預(yù)處理,計(jì)算出從某一下標(biāo)開(kāi)始的某一特定長(zhǎng)度的最值。當(dāng)查找某一區(qū)間的最值時(shí),就可以把這個(gè)區(qū)間分解成一個(gè)或兩個(gè)已預(yù)先算出最值得區(qū)間,這樣就可以用O(1)的復(fù)雜度算出最值了。(具體講解請(qǐng)查閱相關(guān)資料)

             

            代碼:

            #include <iostream>

            #include <cmath>

            #include <algorithm>

            using namespace std;

             

            const int MAX = 50005;

             

            struct Node

            {

                      int index;

                      int k, a;

                      int parent, left, right;

            };

             

            Node node[MAX];

            int left, right;

            int f[MAX][16];                  //f[i][j] is the index of the min a from i

                                             //to i + 2^j - 1

            int n;

             

            bool cmpByK (Node n1, Node n2)

            {

                      return ( n1.k < n2.k );

            }

             

            bool cmpByIndex (Node n1, Node n2)

            {

                      return ( n1.index < n2.index );

            }

             

            void Input ()

            {

                      int i;

                      scanf("%d", &n);

                      for (i=0; i<n; i++)

                      {

                              scanf("%d%d", &node[i].k, &node[i].a);

                              node[i].index = i + 1;

                      }

            }

             

            int Max (int a, int b)

            {

                      return ( a>b?a:b );

            }

             

             

            int Min (int a, int b)

            {

                      return ( a<b?a:b );

            }

             

             

            void Initial ()

            {

                      int i, k, m;

                      sort(node, node+n, cmpByK);

             

             

                      //RMQ

                      for (i=0; i<n; i++)

                              f[i][0] = i;

             

                      m = floor(log(double(n)) / log(double(2))) + 1;

                      for (k=1; k<m; k++)

                      {

                              for (i=0; i<n; i++)

                              {

                                     f[i][k] = f[i][k-1];

                                     if ( i + (1<<(k-1)) < n )

                                     {

                                             if ( node[f[i][k-1]].a > node[f[i + (1<<(k-1))][k-1]].a )

                                                     f[i][k] = f[i + (1<<(k-1))][k-1];

                                     }

                              }

                      }

            }

             

             

            int MinAIndex (int i, int j)

            {

                      int k;

                      k = floor( log(double(j-i+1)) / log(double(2)) );

                      if (node[f[i][k]].a <= node[f[j - (1<<k) + 1][k]].a)

                              return f[i][k];

                      else

                              return f[j - (1<<k) + 1][k];

            }

             

            bool MakeTree (int i, int j)

            {

                      if ( i == j )

                      {

                              node[i].left = node[i].right = 0;

                              return true;

                      }

                      int rootIndex, leftIndex, rightIndex;

                      bool check1, check2;

                      rootIndex = MinAIndex(i, j);

                     

                      if ( rootIndex != i )

                              leftIndex = MinAIndex(i, rootIndex-1);

                      if ( rootIndex != j )

                              rightIndex = MinAIndex(rootIndex+1, j);

             

                      check1 = true;

                      if ( rootIndex != i && node[rootIndex].k > node[leftIndex].k )

                      {

                              node[rootIndex].left = node[leftIndex].index;

                              node[leftIndex].parent = node[rootIndex].index;

                              check1 = MakeTree(i, rootIndex-1);

                      }

                      check2 = true;

                      if ( rootIndex != j && node[rootIndex].k < node[rightIndex].k )

                      {

                              node[rootIndex].right = node[rightIndex].index;

                              node[rightIndex].parent = node[rootIndex].index;

                              check2 = MakeTree(rootIndex+1, j);

                      }

             

                      return ( check1 && check2 );

            }

                     

            void Solve ()

            {

                      if ( MakeTree(0, n-1) )

                      {

                              printf("YES\n");

                              sort(node, node+n, cmpByIndex);

                              for (int i=0; i<n; i++)

                              {

                                     printf("%d %d %d\n", node[i].parent, node[i].left, node[i].right);

                              }

                      }

                      else

                      {

                              printf("NO\n");

                      }

            }

             

            int main ()

            {

                      Input ();

                      Initial ();

                      Solve ();

             

                      return 0;

            }

             

            posted on 2008-04-25 21:27 quxiao 閱讀(1006) 評(píng)論(1)  編輯 收藏 引用 所屬分類: ACM

            評(píng)論

            # re: PKU 2201 Cartesian Tree[未登錄](méi) 2009-05-12 12:20 k
            笛卡爾樹(shù)在排好序的情況下有o(n)構(gòu)造法  回復(fù)  更多評(píng)論
              

            国产精品美女久久久m| 99精品国产在热久久| 亚洲精品tv久久久久| 久久人人爽人人爽人人爽| 久久99精品国产麻豆| 2020最新久久久视精品爱 | 成人午夜精品久久久久久久小说| 国产韩国精品一区二区三区久久| 中文字幕乱码久久午夜| 精品无码久久久久久尤物| 国产91久久精品一区二区| 综合久久一区二区三区| 97久久精品国产精品青草| 久久综合久久鬼色| 国产成人久久激情91| 精品久久人人爽天天玩人人妻| 久久青青草原国产精品免费| 理论片午午伦夜理片久久| 久久国产热精品波多野结衣AV| 久久久精品久久久久特色影视| 亚洲国产精品久久久天堂| 国产精品久久一区二区三区| 无码国内精品久久人妻麻豆按摩| 久久精品人人做人人爽电影| 奇米影视7777久久精品人人爽| 久久99精品国产麻豆蜜芽| 亚洲熟妇无码另类久久久| 亚洲午夜精品久久久久久app| 狠狠综合久久综合中文88| 久久亚洲美女精品国产精品| 亚洲国产成人精品久久久国产成人一区二区三区综 | 久久国产精品偷99| 精品国产一区二区三区久久久狼| 婷婷久久综合九色综合绿巨人| 国产成人久久精品区一区二区| 久久久国产亚洲精品| 久久亚洲中文字幕精品一区| 青青草国产成人久久91网| 国产福利电影一区二区三区久久久久成人精品综合 | 久久综合噜噜激激的五月天| 久久久精品日本一区二区三区|