青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規定點的度數為t,那么就有t根與規定點相連的子樹T1T2、……、Tt,若刪去Ti與規定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規定點的度數減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現將規定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進行標記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(970) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美大片免费观看| 欧美高清在线一区二区| 国产欧亚日韩视频| 欧美资源在线| 鲁大师影院一区二区三区| 亚洲国产欧美一区二区三区同亚洲 | 亚洲欧美日韩精品一区二区| 亚洲一级黄色片| 国模套图日韩精品一区二区| 欧美xx69| 国产精品久久波多野结衣| 欧美一区二区视频在线| 久久久久免费| 一区二区欧美在线| 午夜精品一区二区三区在线播放| 激情一区二区| 99亚洲精品| 国内精品美女av在线播放| 亚洲黄网站在线观看| 欧美日韩美女| 鲁大师影院一区二区三区| 欧美日韩国产欧| 看片网站欧美日韩| 欧美日韩国产色站一区二区三区| 久久成人免费| 欧美日韩的一区二区| 久久久久国产成人精品亚洲午夜| 欧美国产日本| 久久久综合免费视频| 欧美体内谢she精2性欧美 | 亚洲精品中文在线| 久久av资源网| 亚洲制服av| 欧美成年人网| 久久影视三级福利片| 国产精品日韩| 亚洲精品在线免费观看视频| 精品99一区二区| 中文成人激情娱乐网| 亚洲精品视频啊美女在线直播| 欧美一区日韩一区| 亚洲欧美日韩国产另类专区| 麻豆精品网站| 久久夜色精品国产亚洲aⅴ| 国产精品www| 亚洲美女视频在线免费观看| 亚洲国产精品一区二区第一页| 西西裸体人体做爰大胆久久久| 亚洲一区二区三区在线看 | 欧美一区二区三区免费视| 亚洲午夜精品一区二区三区他趣| 欧美成在线观看| 欧美高清在线播放| 精品91在线| 久久久久国色av免费观看性色| 久久成人精品| 国产欧美日本| 欧美一区二区在线播放| 久久成人一区二区| 国产一区二三区| 性色av一区二区三区在线观看| 性感少妇一区| 国产精品一区二区三区观看| 亚洲一二区在线| 欧美亚洲在线| 国产一区二区三区久久久| 欧美亚洲一区在线| 久久免费偷拍视频| 在线观看成人小视频| 久久久欧美精品| 欧美国产一区二区三区激情无套| 亚洲第一页中文字幕| 欧美大片在线看免费观看| 亚洲精品久久在线| 亚洲综合欧美| 国产一区二区三区日韩欧美| 久久久久久久综合色一本| 欧美激情亚洲一区| 一区二区三区欧美| 国产精品日本一区二区| 久久九九精品99国产精品| 欧美激情国产精品| 一区二区三区蜜桃网| 国产精品中文字幕在线观看| 久久国产精彩视频| 亚洲国产欧美一区二区三区同亚洲| 一本色道久久综合亚洲精品小说 | 性欧美精品高清| 欧美va天堂| 亚洲一区二区三区精品动漫| 国产美女精品| 媚黑女一区二区| 在线中文字幕一区| 久久在线免费| 一区二区三区视频在线观看| 国产日韩欧美视频在线| 欧美成人精品在线播放| 亚洲最新在线视频| 噜噜噜躁狠狠躁狠狠精品视频| 一区二区三区视频免费在线观看| 国产精品热久久久久夜色精品三区| 久久精品夜夜夜夜久久| 一本久道久久综合中文字幕| 久久久久综合网| 亚洲午夜精品一区二区| 在线电影国产精品| 国产精品高潮呻吟视频| 久久综合久久综合久久综合| 亚洲乱码久久| 亚洲成人资源| 久久久久久久久久久成人| 中文亚洲欧美| 91久久国产综合久久| 国产欧美视频在线观看| 欧美高清视频免费观看| 久久精品国产69国产精品亚洲| 亚洲欧洲在线一区| 免费看黄裸体一级大秀欧美| 欧美一区二区三区播放老司机| 亚洲精品免费在线| 曰韩精品一区二区| 国产日韩亚洲欧美综合| 欧美日韩中文字幕在线视频| 欧美二区在线| 美女视频黄 久久| 久久精品123| 久久成人一区| 欧美一级片一区| 亚洲欧美国产三级| 亚洲一区免费网站| 亚洲午夜精品久久久久久浪潮| 亚洲精选久久| 亚洲精品乱码久久久久久久久| 亚洲成人直播| 亚洲成人在线视频播放 | 亚洲另类一区二区| 亚洲日本成人在线观看| 亚洲国产另类久久精品| 亚洲国产成人porn| 亚洲福利免费| 亚洲精品日韩在线| 99v久久综合狠狠综合久久| 亚洲精品之草原avav久久| 亚洲精品女av网站| 洋洋av久久久久久久一区| 99精品黄色片免费大全| 一区二区三区偷拍| 亚洲欧美日本精品| 久久精品99国产精品| 久久久一区二区| 免费欧美电影| 亚洲欧洲综合另类| 99riav国产精品| 亚洲女人天堂成人av在线| 亚洲欧美制服另类日韩| 久久精品一区二区三区四区| 久久一区亚洲| 欧美精品一区二区在线播放| 欧美日韩国产大片| 国产精品国产三级国产专播品爱网 | 在线看无码的免费网站| 亚洲激情在线观看| 亚洲无限乱码一二三四麻| 午夜精品亚洲一区二区三区嫩草| 欧美在线免费观看| 免费成人av| 99精品视频免费全部在线| 亚洲一区二区网站| 老司机成人网| 国产精品久久久久婷婷| 极品日韩av| 中日韩美女免费视频网址在线观看 | 久久综合狠狠| 亚洲日韩第九十九页| 午夜精品福利在线| 欧美大片网址| 国产一区二区三区最好精华液| 亚洲美女在线国产| 久久激情视频| 日韩亚洲欧美一区二区三区| 欧美一区二区私人影院日本| 欧美欧美天天天天操| 国语自产精品视频在线看抢先版结局| 最新日韩在线| 久久久久久亚洲综合影院红桃| 亚洲精品美女在线| 久久久久青草大香线综合精品| 欧美视频在线观看一区| 亚洲国产精品成人| 午夜激情久久久| 亚洲欧洲精品一区二区精品久久久| 先锋影音久久久| 欧美三日本三级少妇三2023| 亚洲成人在线网站| 久久国产视频网| 亚洲一区二区三区四区视频| 欧美日韩国产在线播放网站| 亚洲高清不卡一区| 久久免费国产精品1| 亚洲欧美日韩视频一区|