青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規定點的度數為t,那么就有t根與規定點相連的子樹T1T2、……、Tt,若刪去Ti與規定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規定點的度數減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現將規定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進行標記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(980) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            91久久精品日日躁夜夜躁欧美| 久久精品伊人| 欧美h视频在线| 欧美日韩国产色站一区二区三区| 亚洲精品少妇30p| 亚洲电影有码| 亚洲一区在线看| 久久欧美肥婆一二区| 在线日韩视频| 日韩天天综合| 久久亚裔精品欧美| 欧美亚日韩国产aⅴ精品中极品| 99精品欧美一区二区蜜桃免费| 欧美一区二区在线视频| 亚洲国产裸拍裸体视频在线观看乱了| 欧美凹凸一区二区三区视频| 中国亚洲黄色| 亚洲福利视频三区| 欧美一级大片在线观看| 亚洲激情av在线| 久久免费一区| 欧美金8天国| 午夜在线a亚洲v天堂网2018| 久久久.com| 国产精品专区第二| 一级日韩一区在线观看| 亚洲视屏一区| 1024国产精品| 亚洲女ⅴideoshd黑人| 在线观看日韩av| 亚洲午夜精品17c| 亚洲福利电影| 女仆av观看一区| 欧美日韩中文在线| 一区二区免费在线观看| 欧美黑人国产人伦爽爽爽| 欧美亚洲午夜视频在线观看| 欧美视频中文字幕| 一本色道久久加勒比88综合| 亚洲高清视频一区| 国产精品视频一二三| 欧美大片一区二区| 国产女主播一区| 久久aⅴ国产紧身牛仔裤| 欧美刺激性大交免费视频| 在线视频成人| 欧美亚洲一区三区| 亚洲欧美日韩视频二区| 亚洲视频在线二区| 国产精品99一区二区| 亚洲国产欧美不卡在线观看| 免费高清在线一区| 亚洲一区二区视频在线| 欧美成人三级在线| 久久视频在线免费观看| 国产精品日本精品| 久久国产精品99国产| 欧美在线不卡| 亚洲国产精品成人综合色在线婷婷| 亚洲欧美综合国产精品一区| 激情国产一区二区| 亚洲欧美日韩精品久久久久| 亚洲视频一区| 欧美日韩国产欧| 日韩视频在线观看| 在线午夜精品| 欧美调教vk| 一区二区三区成人| 国内视频一区| 久久精品夜色噜噜亚洲aⅴ| 伊人久久婷婷| 久久久久国内| 美女视频黄a大片欧美| 在线观看的日韩av| 一本色道久久综合亚洲91| 日韩视频免费观看| 日韩天堂在线视频| 午夜久久久久| 99国产精品国产精品久久 | 欧美日韩一区二区国产| 91久久线看在观草草青青| 欧美午夜精品电影| 久久久噜噜噜久久| 在线成人免费视频| 中文日韩欧美| 欧美一区二区| 亚洲国产成人久久综合一区| 欧美sm重口味系列视频在线观看| 性欧美办公室18xxxxhd| 国产视频一区在线观看| 久久精品国产第一区二区三区| 美女成人午夜| 亚洲久久一区二区| 国产精品一区久久久| 久久精品国产亚洲精品| 亚洲国产日韩欧美在线图片| 亚洲欧美日韩精品一区二区| 亚洲精品视频一区| 国产精品福利在线观看网址| 欧美在线播放| 欧美在线亚洲| 国产精品九九久久久久久久| 亚洲高清自拍| 亚洲欧洲av一区二区| 欧美激情一区二区三区在线视频 | 久久久www成人免费无遮挡大片| 欧美日韩国产不卡在线看| 国内精品美女在线观看| 日韩视频在线免费观看| 亚洲免费观看高清完整版在线观看| 性色一区二区三区| 亚洲欧洲日产国产网站| 欧美综合二区| 国产亚洲aⅴaaaaaa毛片| 欧美激情精品| 久久久国产精品一区二区中文| 亚洲美女电影在线| 老司机午夜精品视频在线观看| 亚洲午夜高清视频| 在线精品亚洲| 国产午夜精品理论片a级探花| 亚洲线精品一区二区三区八戒| 国内成人精品视频| 久久精品夜色噜噜亚洲aⅴ| 久久久中精品2020中文| 亚洲一区二区免费在线| 亚洲激情中文1区| 国产亚洲毛片| 国产精品午夜在线| 欧美日韩一视频区二区| 免费在线观看精品| 久久黄金**| 欧美国产亚洲另类动漫| 亚洲精品国产品国语在线app| 韩国一区二区三区美女美女秀| 夜夜嗨av一区二区三区四季av | 午夜欧美精品| 亚洲国产精品成人一区二区| 极品尤物av久久免费看 | 久久尤物视频| 亚洲二区精品| 亚洲电影免费在线观看| 国产视频欧美视频| 国产精品久久久一区二区| 欧美日韩国产三区| 欧美高清视频免费观看| 久久亚洲精品一区二区| 午夜久久资源| 国产精品黄色| 欧美综合激情网| 欧美成人精品不卡视频在线观看 | 又紧又大又爽精品一区二区| 久久一区精品| 老鸭窝91久久精品色噜噜导演| 欧美在线亚洲一区| 久久久精品动漫| 久久综合伊人77777| 免费亚洲婷婷| 亚洲欧美日韩国产综合| 美日韩免费视频| 欧美色图麻豆| 国产精品一区久久久| 欧美超级免费视 在线| 亚洲一区二区少妇| 欧美mv日韩mv国产网站| 亚洲第一中文字幕在线观看| 亚洲精品乱码久久久久久| 99re成人精品视频| 午夜精品久久久久久久蜜桃app | 亚洲国产黄色| 一本色道久久88综合日韩精品| 亚洲午夜激情免费视频| 久久久91精品国产| 欧美成人一区二区三区| 小黄鸭视频精品导航| 日韩视频免费| 午夜久久电影网| 亚洲精品中文字| 亚洲第一精品夜夜躁人人爽| 亚洲人成亚洲人成在线观看图片 | 欧美一区二区成人| 欧美成人免费一级人片100| 日韩一级在线观看| 久久国产福利| 午夜在线不卡| 欧美精品成人一区二区在线观看| 国产精品老牛| 亚洲人久久久| 亚洲日本中文字幕区| 怡红院精品视频| 国产日韩亚洲欧美综合| 亚洲精品在线二区| 久久久xxx| 玖玖玖免费嫩草在线影院一区| 日韩午夜三级在线| 亚洲伦理一区| 久久久综合免费视频| 久久精品国产一区二区三区免费看| 亚洲女同在线| 欧美人成在线|