• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

            PKU 1639 Picnic Planning解題報告

             

            分類:

            圖論、最小度限制生成樹

             

            原題:

            Picnic Planning

            Time Limit: 5000MS

            Memory Limit: 10000K

            Description

            The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

            Input

            Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

            Output

            Output should consist of one line of the form
            Total miles driven: xxx
            where xxx is the total number of miles driven by all the brothers' cars.

            Sample Input

            10

            Alphonzo Bernardo 32

            Alphonzo Park 57

            Alphonzo Eduardo 43

            Bernardo Park 19

            Bernardo Clemenzi 82

            Clemenzi Park 65

            Clemenzi Herb 90

            Clemenzi Eduardo 109

            Park Herb 24

            Herb Eduardo 79

            3

            Sample Output

            Total miles driven: 183

             

             

            題目大意:

            一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

             

            思路:

            因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

            假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數滿足條件。

            還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規定點的度數為t,那么就有t根與規定點相連的子樹T1T2、……、Tt,若刪去Ti與規定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規定點的度數減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

            除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現將規定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

             

             

            代碼:

             

            #include <iostream>

            #include <map>

            #include <string>

            #include <vector>

            #include <algorithm>

            using namespace std;

             

            const int MAX = 50;

             

            struct Edge

            {

                     int a, b;

                     int len;

            };

             

            vector<Edge> edge;

            map<string, int> nameIndex;

            int G[MAX][MAX];

            int tree[MAX][MAX];

            int n, m, k;

            int parkIndex;

            int degree[MAX];

            int treeDegree[MAX];

            int p[MAX];

            int inTree[MAX];

            int rank[MAX];

            int minCost;

            int treeTag[MAX];             //對子樹進行標記

            int visited[MAX];

            int subTreeNum;

             

            bool operator< (Edge e1, Edge e2)

            {

                     return ( e1.len < e2.len );

            }

             

             

            void Input ()

            {

                     string a, b;

                     int index1, index2;

                     int len;

                     Edge e;

                     n = 0;

                     cin>>m;

                     for (int i=0; i<m; i++)

                     {

                               cin>>a>>b>>len;

                               if ( nameIndex.find(a) == nameIndex.end() )

                               {

                                        nameIndex[a] = n;

                                        index1 = n;

                                        n ++;

                               }

                               else

                               {

                                        index1 = nameIndex[a];

                               }

             

                               if ( nameIndex.find(b) == nameIndex.end() )

                               {

                                        nameIndex[b] = n;

                                        index2 = n;

                                        n ++;

                               }

                               else

                               {

                                        index2 = nameIndex[b];

                               }

             

                               if ( a == "Park" )

                                        parkIndex = index1;

                               if ( b == "Park" )

                                        parkIndex = index2;

                               G[index1][index2] = G[index2][index1] = len;

                               e.a = index1;

                               e.b = index2;

                               e.len = len;

                               edge.push_back(e);

                               degree[index1] ++;

                               degree[index2] ++;

                     }

             

                     cin>>k;

            }

             

            int Find (int x)

            {

                int t, root, w;

                t = x;

                while ( p[t] != -1 )

                               t = p[t];

                root = t;

                t = x;

                while ( p[t] != -1 )

                {

                               w = p[t];

                               p[t] = root;

                               t = w;

                }

                    

                return root;

            }

             

            void Union (int x, int y)

            {

                     int r1, r2;

                     r1 = Find(x);

                     r2 = Find(y);

                    

                     if ( rank[r1] >= rank[r2] )

                     {

                               p[r2] = r1;

                               if ( rank[r1] == rank[r2] )

                                        rank[r1]++;

                     }

                     else

                               p[r1] = r2;

            }

             

             

            bool Kruskal ()

            {

                     int i, r1, r2, k, total, Max;

                     memset(p, -1, sizeof(p));

                     memset(inTree, 0, sizeof(inTree));

                     memset(rank, 1, sizeof(rank));

                     //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

                     sort(edge.begin(), edge.end());

             

                Max = -1;

                     k = 0;

                     minCost = 0;

                     for (i=0; i<edge.size() && k<n-1; i++)

                     {

             

                               r1 = Find(edge[i].a);

                               r2 = Find(edge[i].b);

                               if ( r1 != r2 )

                               {

                                        tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                                        //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                                        Union(r1, r2);

                                        inTree[i] = 1;

                                        treeDegree[edge[i].a] ++;

                                        treeDegree[edge[i].b] ++;

                                        k++;

                                        minCost += edge[i].len;

                               }

                     }

             

             

                     if ( k == n - 1 )

                    return true;

                     else

                               return false;

            }

             

             

            void DFS (int cur, int index)

            {

                     visited[cur] = 1;

                     treeTag[cur] = index;

                     int i;

                     for (i=0; i<n; i++)

                     {

                               if ( tree[cur][i] && !visited[i] )

                               {

                                        DFS (i, index);

                               }

                     }

            }

             

            void MakeTreeTag ()

            {

                     int i;

                     subTreeNum = 0;

                     memset(visited, 0, sizeof(visited));

                     visited[parkIndex] = 1;

                     memset(treeTag, -1, sizeof(treeTag));

                     for (i=0; i<n; i++)

                     {

                               if ( tree[parkIndex][i] )

                                        DFS (i, subTreeNum++);

                     }

            }

             

            //將原來的子樹架在另一棵樹上

            void ChangeTreeTag (int pre, int cur)

            {

                     int i;

                     for (i=0; i<n; i++)

                               if ( treeTag[i] == pre )

                                        treeTag[i] = cur;

            }

             

            //從當前子樹查找與其他子樹相連的最小邊

            Edge FindMinEdge (int curTag)

            {

                     int i;

                     Edge e;

                     e.len = -1;

                     for (i=0; i<edge.size(); i++)

                     {

                               if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                                        || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                                        && G[edge[i].a][edge[i].b] )

                               {

                                        if ( e.len == -1 || edge[i].len < e.len )

                                        {

                                                 e.a = edge[i].a;

                                                 e.b = edge[i].b;

                                                 e.len = edge[i].len;

                                        }

                               }

                     }

                     return e;

            }

             

             

            void DeleteAdd ()

            {

                     int i, minDif, delTag, newTag;

                     minDif = -1;

                     Edge addEdge, delEdge, temp;

                     for (i=0; i<n; i++)

                     {

                               if ( i == parkIndex )

                                        continue;

                               temp = FindMinEdge(treeTag[i]);

                               if ( temp.len == -1 )

                                        continue;

                               if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                               {

                                        minDif = temp.len - tree[parkIndex][i];

                                        addEdge = temp;

                                        delEdge.a = parkIndex;

                                        delEdge.b = i;

                                        delTag = treeTag[i];

                                        if ( treeTag[addEdge.a] != delTag )

                                                 newTag = treeTag[addEdge.a];

                                        else

                                                 newTag = treeTag[addEdge.b];

                               }

                     }

             

                     tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

                     G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

                     tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

                    

                     minCost += minDif;

             

                     ChangeTreeTag(delTag, newTag);

            }

             

             

            void Solve ()

            {

                     Kruskal();

                     if ( treeDegree[parkIndex] <= k )

                     {

                               cout<<"Total miles driven: "<<minCost<<endl;

                               return;

                     }

             

                     MakeTreeTag ();

             

                     int i;

                     for (i=0; i<treeDegree[parkIndex]-k; i++)

                               DeleteAdd();

             

                     cout<<"Total miles driven: "<<minCost<<endl;

            }

             

            int main ()

            {

                     Input ();

                     Solve ();

             

                     return 0;

            }

            posted on 2008-07-30 19:10 quxiao 閱讀(943) 評論(1)  編輯 收藏 引用 所屬分類: ACM

            評論

            # re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
            如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
              

            亚洲国产精品综合久久一线| 精品久久久噜噜噜久久久| 久久99久久99精品免视看动漫| 99久久精品免费| 国产精品激情综合久久| 99久久精品国内| 99久久免费国产精精品| 狠色狠色狠狠色综合久久| 成人国内精品久久久久影院| 国内精品久久久久影院日本| 久久精品国产亚洲av麻豆色欲| 精品蜜臀久久久久99网站| 国产午夜久久影院| 久久精品国产只有精品66| 日韩久久久久中文字幕人妻| 久久久久久亚洲精品影院| 久久精品国产久精国产果冻传媒| 久久婷婷国产剧情内射白浆| 精品国产乱码久久久久软件| 久久久久人妻一区二区三区vr| 久久这里只有精品久久| 91久久精品视频| 久久热这里只有精品在线观看| 国产午夜免费高清久久影院| 国产亚洲精久久久久久无码AV| 久久精品成人免费国产片小草| 精品伊人久久久| 狠狠狠色丁香婷婷综合久久俺| 久久久久人妻精品一区三寸蜜桃| 伊人伊成久久人综合网777| 国产精品无码久久综合| 国产精品免费看久久久香蕉| 亚洲乱码精品久久久久..| 中文字幕久久欲求不满| 一日本道伊人久久综合影| 99热成人精品热久久669| 亚洲精品97久久中文字幕无码| 久久九九精品99国产精品| 久久久精品日本一区二区三区 | 久久Av无码精品人妻系列 | 人妻无码精品久久亚瑟影视 |