青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規定點的度數為t,那么就有t根與規定點相連的子樹T1T2、……、Tt,若刪去Ti與規定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規定點的度數減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現將規定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進行標記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(970) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产视频欧美| 欧美电影免费观看高清| 国产精品久久二区| 午夜精品福利视频| 亚洲调教视频在线观看| 国产精品色网| 美女久久一区| 午夜综合激情| 亚洲国产高清aⅴ视频| 亚洲国产精品悠悠久久琪琪| 久久午夜精品一区二区| 亚洲国产另类精品专区| 亚洲精品美女在线| 国产精品日韩欧美一区| 麻豆国产精品va在线观看不卡| 久久综合久久综合久久综合| 日韩网站在线看片你懂的| 在线中文字幕一区| 一区在线观看视频| 亚洲精品综合久久中文字幕| 国产亚洲欧美一区二区| 亚洲大胆在线| 国产日韩欧美a| 91久久国产自产拍夜夜嗨| 国产精品theporn| 牛人盗摄一区二区三区视频| 欧美午夜一区| 欧美成人黑人xx视频免费观看| 欧美日本在线| 欧美成人精品一区二区| 国产精品国产三级国产aⅴ无密码| 久久天堂成人| 国产精品久久久亚洲一区 | 欧美视频日韩视频| 久久九九99| 欧美日韩喷水| 亚洲大片在线| 国产主播一区| 亚洲午夜免费视频| 亚洲看片免费| 久久亚洲春色中文字幕久久久| 亚洲欧美另类久久久精品2019| 美女久久一区| 久久人人爽人人爽| 国产欧美日韩免费看aⅴ视频| 亚洲人妖在线| 亚洲日本视频| 美女国产一区| 老司机午夜精品视频| 国产精品人成在线观看免费| 亚洲另类在线一区| 亚洲精品在线视频观看| 蜜臀久久久99精品久久久久久| 久久国产一区| 国产欧美精品一区| 亚洲免费在线视频一区 二区| 在线视频你懂得一区二区三区| 麻豆精品精华液| 免费的成人av| 亚洲国产精彩中文乱码av在线播放| 欧美一级久久久| 久久精品国产欧美激情| 国产喷白浆一区二区三区| 亚洲一区二区三区中文字幕在线 | 国产精品国产三级国产专播精品人 | 亚洲免费成人av电影| 亚洲精品四区| 欧美日本一区二区视频在线观看| 亚洲黄色性网站| 日韩一级成人av| 欧美日韩在线视频首页| 夜夜爽夜夜爽精品视频| 亚洲一级电影| 国产精品视频免费| 午夜日韩视频| 久久亚洲免费| 亚洲国产精品久久久久婷婷884 | 国产一区二区三区在线播放免费观看 | 亚洲黄页一区| 亚洲网站在线观看| 国产伦精品一区二区三区视频黑人| 一本久道综合久久精品| 欧美一区二区三区视频| 国模精品娜娜一二三区| 美腿丝袜亚洲色图| 亚洲毛片在线观看| 小嫩嫩精品导航| 永久免费毛片在线播放不卡| 美女日韩欧美| 亚洲天堂免费观看| 另类激情亚洲| 亚洲午夜在线| 国产伊人精品| 欧美精品99| 午夜伦理片一区| 欧美韩日一区二区| 翔田千里一区二区| 亚洲高清不卡一区| 国产精品久久| 欧美国产日韩精品免费观看| 亚洲综合精品| 亚洲国产成人久久| 久久国产主播精品| 日韩午夜电影| 在线不卡欧美| 国产麻豆精品视频| 欧美—级a级欧美特级ar全黄| 午夜精品美女久久久久av福利| 亚洲第一页在线| 久久久精品tv| 亚洲一区二区三区四区中文| 在线播放日韩| 国产啪精品视频| 欧美三级乱码| 亚洲伦理久久| 在线欧美电影| 国产日韩av一区二区| 欧美日韩三区| 欧美成人午夜激情| 久久久夜色精品亚洲| 亚洲一区二区三区激情| 亚洲精品综合在线| 亚洲国产精品一区二区第一页| 久久夜色精品国产噜噜av| 亚洲男人的天堂在线| aa国产精品| 最新精品在线| 精品1区2区| 国产资源精品在线观看| 国产精品久久久久久久午夜| 欧美精品乱人伦久久久久久| 久久综合久久久久88| 久久免费视频网站| 性刺激综合网| 香蕉久久夜色精品国产使用方法| 一本色道久久综合一区| 一本综合精品| 亚洲视频在线观看免费| 一区二区三区蜜桃网| 亚洲社区在线观看| 亚洲图片你懂的| 亚洲一区二区视频在线| 亚洲欧美成人一区二区三区| 亚洲一区二区三区高清| 亚洲欧美日韩精品一区二区| 亚洲一区二区三区精品视频| 亚洲欧美激情精品一区二区| 亚洲欧美精品伊人久久| 香蕉成人伊视频在线观看| 欧美在线观看视频| 久久一区二区三区国产精品 | 国产精品多人| 国产精品一级二级三级| 国产自产在线视频一区| 一区二区三区在线免费播放| 在线不卡亚洲| 一区二区精品| 久久爱另类一区二区小说| 久久久久高清| 亚洲国产美女| 亚洲视频日本| 久久九九久精品国产免费直播| 久久久久网址| 欧美劲爆第一页| 国产精品一二三四区| 亚洲福利在线视频| 一区二区三区国产精品| 久久不射2019中文字幕| 欧美福利一区二区三区| 日韩视频在线一区二区三区| 亚洲欧美伊人| 欧美成人日本| 国产精品视频一区二区高潮| 在线精品视频免费观看| 在线一区二区三区四区| 久久精品中文字幕一区| 亚洲国产综合91精品麻豆| 亚洲一区二区三区激情| 免费美女久久99| 国产美女在线精品免费观看| 亚洲福利视频免费观看| 亚洲制服欧美中文字幕中文字幕| 久久久亚洲国产美女国产盗摄| 亚洲激情欧美激情| 久久国产精品99国产| 欧美午夜久久| 亚洲黄色有码视频| 亚洲欧美国产高清va在线播| 欧美成人小视频| 午夜影院日韩| 欧美性久久久| 亚洲精品色婷婷福利天堂| 欧美国产日韩在线| 国产一区二区欧美| 亚洲综合导航| 亚洲麻豆av| 欧美大片在线影院| 狠狠色丁香婷婷综合久久片| 亚洲欧美在线播放| 亚洲美女在线视频|