• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進(jìn)步一點(diǎn)點(diǎn)!

              C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評(píng)論 :: 0 Trackbacks
            題目來(lái)源:

                            PKU 2201 Cartesian Tree

            分類(lèi):

                            RMQ

            原文:

             

            Cartesian Tree

            Time Limit: 10000MS


            Memory Limit: 65536K

            Total Submissions: 1196


            Accepted: 423

            Case Time Limit: 2000MS

            Description

            Let us consider a special type of a binary search tree, called a cartesian tree. Recall that a binary search tree is a rooted ordered binary tree, such that for its every node x the following condition is satisfied: each node in its left subtree has the key less then the key of x, and each node in its right subtree has the key greater then the key of x.
            That is, if we denote left subtree of the node x by L(x), its right subtree by R(x) and its key by kx then for each node x we have

            • if y L(x) then ky < kx
            • if z R(x) then kz > kx


            The binary search tree is called cartesian if its every node x in addition to the main key kx also has an auxiliary key that we will denote by ax, and for these keys the heap condition is satisfied, that is

            • if y is the parent of x then ay < ax


            Thus a cartesian tree is a binary rooted ordered tree, such that each of its nodes has a pair of two keys (k, a) and three conditions described are satisfied.
            Given a set of pairs, construct a cartesian tree out of them, or detect that it is not possible.

            Input

            The first line of the input file contains an integer number N -- the number of pairs you should build cartesian tree out of (1 <= N <= 50 000). The following N lines contain two numbers each -- given pairs (ki, ai). For each pair |ki|, |ai| <= 30 000. All main keys and all auxiliary keys are different, i.e. ki != kj and ai != aj for each i != j.

            Output

            On the first line of the output file print YES if it is possible to build a cartesian tree out of given pairs or NO if it is not. If the answer is positive, on the following N lines output the tree. Let nodes be numbered from 1 to N corresponding to pairs they contain as they are given in the input file. For each node output three numbers -- its parent, its left child and its right child. If the node has no parent or no corresponding child, output 0 instead.
            The input ensure these is only one possible tree.

            Sample Input

            7

            5 4

            2 2

            3 9

            0 5

            1 3

            6 6

            4 11

            Sample Output

            YES

            2 3 6

            0 5 1

            1 0 7

            5 0 0

            2 4 0

            1 0 0

            3 0 0

            Source

            Northeastern Europe 2002, Northern Subregion

             

             

             

             

            中文描述:

                            有一種二叉樹(shù),叫笛卡爾樹(shù),樹(shù)的節(jié)點(diǎn)有兩個(gè)值:kak值滿足二叉排序樹(shù)的性質(zhì),a值滿足最小堆的性質(zhì)。即如果某個(gè)根節(jié)點(diǎn)root有兩個(gè)子節(jié)點(diǎn)leftright,那么left.k < root.k < right.k,且root.a < left.aroot.a < right.a。給你N(1 <= N <= 50 000)個(gè)節(jié)點(diǎn),問(wèn)你是否可以構(gòu)造出一棵笛卡爾樹(shù)。

             

            題目分析與算法模型

                            一開(kāi)始,自己是想根據(jù)最小堆的性質(zhì),擁有最小a值的那個(gè)節(jié)點(diǎn)一定是樹(shù)的根,接著再找兩個(gè)次小a值的節(jié)點(diǎn),它們必然是根的兩個(gè)子節(jié)點(diǎn),再根據(jù)k值決定節(jié)點(diǎn)是左兒子還是右兒子,然后再以此類(lèi)推…………,但是在下一層就不對(duì)了。因?yàn)椴⒉皇菢?shù)的下一層節(jié)點(diǎn)的a值一定比上一層節(jié)點(diǎn)的a值大(它們不一定在同一棵子樹(shù))。

                            可以換一個(gè)思維,把注意力放在k值上。要知道,如果對(duì)一顆二叉排序樹(shù)進(jìn)行前序搜索,k值是從小到大排序的。如果某個(gè)節(jié)點(diǎn)是根,那么它左邊的節(jié)點(diǎn)就構(gòu)成左子樹(shù),它右邊的節(jié)點(diǎn)就構(gòu)成右子樹(shù)。現(xiàn)在,那個(gè)根節(jié)點(diǎn)是哪一個(gè)?就是那個(gè)a值最小的節(jié)點(diǎn)!所以,我們可以對(duì)k值進(jìn)行排序,現(xiàn)在整個(gè)區(qū)間內(nèi)找到a值最小的節(jié)點(diǎn),他就是根。接著再在左邊和右邊的區(qū)間內(nèi)各找一個(gè)a值最小的節(jié)點(diǎn),看它們的節(jié)點(diǎn)的k值與根節(jié)點(diǎn)的k值是否滿足二叉排序樹(shù)的性質(zhì),如果滿足,就用相同的方法在左、右區(qū)間遞歸建立子樹(shù);如果不滿足,表示無(wú)法構(gòu)成笛卡爾樹(shù)。


                            接下來(lái)的問(wèn)題就是,如何在一區(qū)間里找到最小的a值?最容易想到的就是O(n)復(fù)雜度的線性查找,但在此題中,N最大為50000,并且當(dāng)在一個(gè)較大區(qū)間內(nèi)查找到一個(gè)最值后,又要在一個(gè)較小的區(qū)間內(nèi)查找另一個(gè)最值,一些節(jié)點(diǎn)被查找了多次,造成時(shí)間的浪費(fèi)。那么,怎么高效的進(jìn)行多次的區(qū)間查詢呢?RMQ是一個(gè)不錯(cuò)的解決方法。大致思想是:先對(duì)區(qū)間內(nèi)的數(shù)進(jìn)行預(yù)處理,計(jì)算出從某一下標(biāo)開(kāi)始的某一特定長(zhǎng)度的最值。當(dāng)查找某一區(qū)間的最值時(shí),就可以把這個(gè)區(qū)間分解成一個(gè)或兩個(gè)已預(yù)先算出最值得區(qū)間,這樣就可以用O(1)的復(fù)雜度算出最值了。(具體講解請(qǐng)查閱相關(guān)資料)

             

            代碼:

            #include <iostream>

            #include <cmath>

            #include <algorithm>

            using namespace std;

             

            const int MAX = 50005;

             

            struct Node

            {

                      int index;

                      int k, a;

                      int parent, left, right;

            };

             

            Node node[MAX];

            int left, right;

            int f[MAX][16];                  //f[i][j] is the index of the min a from i

                                             //to i + 2^j - 1

            int n;

             

            bool cmpByK (Node n1, Node n2)

            {

                      return ( n1.k < n2.k );

            }

             

            bool cmpByIndex (Node n1, Node n2)

            {

                      return ( n1.index < n2.index );

            }

             

            void Input ()

            {

                      int i;

                      scanf("%d", &n);

                      for (i=0; i<n; i++)

                      {

                              scanf("%d%d", &node[i].k, &node[i].a);

                              node[i].index = i + 1;

                      }

            }

             

            int Max (int a, int b)

            {

                      return ( a>b?a:b );

            }

             

             

            int Min (int a, int b)

            {

                      return ( a<b?a:b );

            }

             

             

            void Initial ()

            {

                      int i, k, m;

                      sort(node, node+n, cmpByK);

             

             

                      //RMQ

                      for (i=0; i<n; i++)

                              f[i][0] = i;

             

                      m = floor(log(double(n)) / log(double(2))) + 1;

                      for (k=1; k<m; k++)

                      {

                              for (i=0; i<n; i++)

                              {

                                     f[i][k] = f[i][k-1];

                                     if ( i + (1<<(k-1)) < n )

                                     {

                                             if ( node[f[i][k-1]].a > node[f[i + (1<<(k-1))][k-1]].a )

                                                     f[i][k] = f[i + (1<<(k-1))][k-1];

                                     }

                              }

                      }

            }

             

             

            int MinAIndex (int i, int j)

            {

                      int k;

                      k = floor( log(double(j-i+1)) / log(double(2)) );

                      if (node[f[i][k]].a <= node[f[j - (1<<k) + 1][k]].a)

                              return f[i][k];

                      else

                              return f[j - (1<<k) + 1][k];

            }

             

            bool MakeTree (int i, int j)

            {

                      if ( i == j )

                      {

                              node[i].left = node[i].right = 0;

                              return true;

                      }

                      int rootIndex, leftIndex, rightIndex;

                      bool check1, check2;

                      rootIndex = MinAIndex(i, j);

                     

                      if ( rootIndex != i )

                              leftIndex = MinAIndex(i, rootIndex-1);

                      if ( rootIndex != j )

                              rightIndex = MinAIndex(rootIndex+1, j);

             

                      check1 = true;

                      if ( rootIndex != i && node[rootIndex].k > node[leftIndex].k )

                      {

                              node[rootIndex].left = node[leftIndex].index;

                              node[leftIndex].parent = node[rootIndex].index;

                              check1 = MakeTree(i, rootIndex-1);

                      }

                      check2 = true;

                      if ( rootIndex != j && node[rootIndex].k < node[rightIndex].k )

                      {

                              node[rootIndex].right = node[rightIndex].index;

                              node[rightIndex].parent = node[rootIndex].index;

                              check2 = MakeTree(rootIndex+1, j);

                      }

             

                      return ( check1 && check2 );

            }

                     

            void Solve ()

            {

                      if ( MakeTree(0, n-1) )

                      {

                              printf("YES\n");

                              sort(node, node+n, cmpByIndex);

                              for (int i=0; i<n; i++)

                              {

                                     printf("%d %d %d\n", node[i].parent, node[i].left, node[i].right);

                              }

                      }

                      else

                      {

                              printf("NO\n");

                      }

            }

             

            int main ()

            {

                      Input ();

                      Initial ();

                      Solve ();

             

                      return 0;

            }

             

            posted on 2008-04-25 21:27 quxiao 閱讀(998) 評(píng)論(1)  編輯 收藏 引用 所屬分類(lèi): ACM

            評(píng)論

            # re: PKU 2201 Cartesian Tree[未登錄](méi) 2009-05-12 12:20 k
            笛卡爾樹(shù)在排好序的情況下有o(n)構(gòu)造法  回復(fù)  更多評(píng)論
              

            性做久久久久久久久浪潮| yy6080久久| 香蕉久久av一区二区三区| 久久一本综合| 韩国三级中文字幕hd久久精品| 久久久久亚洲精品无码蜜桃| 伊人 久久 精品| 亚洲天堂久久久| 一级A毛片免费观看久久精品| 亚洲国产综合久久天堂| 狠狠综合久久综合中文88| 热久久这里只有精品| 91精品国产综合久久香蕉| 亚洲国产精品一区二区久久| 久久香蕉国产线看观看99| 国产成人精品久久综合 | 国产精品久久久久乳精品爆| 国产精品视频久久| 美女写真久久影院| 国产69精品久久久久9999| 久久99精品久久久久久不卡| 一极黄色视频久久网站| 99久久精品国产一区二区 | 久久亚洲精品视频| 国产A级毛片久久久精品毛片| 99久久夜色精品国产网站| 日日狠狠久久偷偷色综合96蜜桃| 久久夜色精品国产亚洲av| 无码久久精品国产亚洲Av影片| AV无码久久久久不卡蜜桃| 国产亚洲精久久久久久无码AV| 久久精品国产国产精品四凭| A级毛片无码久久精品免费| 精品久久久久久无码中文字幕一区 | 97久久超碰国产精品2021| 伊人久久大香线蕉精品| 国内精品久久久久影院亚洲| 狠狠色丁香久久婷婷综合五月| 久久精品国产黑森林| 亚洲综合日韩久久成人AV| 丰满少妇人妻久久久久久4|