• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

            解題報告

             

            題目來源:

            PKU 1505 Copying Books

             

            算法分類:

            DP

             

            原文:

            Copying Books

            Time Limit: 3000MS


            Memory Limit: 10000K

            Total Submissions: 1806


            Accepted: 404

            Description

            Before the invention of book-printing, it was very hard to make a copy of a book. All the contents had to be re-written by hand by so called scribers. The scriber had been given a book and after several months he finished its copy. One of the most famous scribers lived in the 15th century and his name was Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was very annoying and boring. And the only way to speed it up was to hire more scribers.

            Once upon a time, there was a theater ensemble that wanted to play famous Antique Tragedies. The scripts of these plays were divided into many books and actors needed more copies of them, of course. So they hired many scribers to make copies of these books. Imagine you have m books (numbered 1, 2 ... m) that may have different number of pages (p1, p2 ... pm) and you want to make one copy of each of them. Your task is to divide these books among k scribes, k <= m. Each book can be assigned to a single scriber only, and every scriber must get a continuous sequence of books. That means, there exists an increasing succession of numbers 0 = b0 < b1 < b2, ... < bk-1 <= bk = m such that i-th scriber gets a sequence of books with numbers between bi-1+1 and bi. The time needed to make a copy of all the books is determined by the scriber who was assigned the most work. Therefore, our goal is to minimize the maximum number of pages assigned to a single scriber. Your task is to find the optimal assignment.

            Input

            The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case consists of exactly two lines. At the first line, there are two integers m and k, 1 <= k <= m <= 500. At the second line, there are integers p1, p2, ... pm separated by spaces. All these values are positive and less than 10000000.

            Output

            For each case, print exactly one line. The line must contain the input succession p1, p2, ... pm divided into exactly k parts such that the maximum sum of a single part should be as small as possible. Use the slash character ('/') to separate the parts. There must be exactly one space character between any two successive numbers and between the number and the slash.

            If there is more than one solution, print the one that minimizes the work assigned to the first scriber, then to the second scriber etc. But each scriber must be assigned at least one book.

            Sample Input

            2

            9 3

            100 200 300 400 500 600 700 800 900

            5 4

            100 100 100 100 100

            Sample Output

            100 200 300 400 500 / 600 700 / 800 900

            100 / 100 / 100 / 100 100

            Source

            Central Europe 1998

             

             

            中文描述:

            題目大意是給你m1…m)本書,每本書有Pm頁,用kk<=m)個員工來復印這些書。每本書只能分配給一個員工來復印,并且每個員工必須復印一段連續(xù)的書籍,每個員工復印的時間取決于所復印書籍的總頁數(shù)。讓你給出相應的分配,使得分配給員工的書籍頁數(shù)的最大值盡量小。注意,如果有多種分配的方案,使得第一個員工的書籍頁數(shù)盡量少,其次是第二個、第三個……以此類推。

             

            題目分析:

            我們可以從后往前推,最后一個員工,也就是第k個員工,他至少要復印第m本書,至多可以復印第k本到第m本(因為至少要分配給前k-1個員工每人一本書)。假設(shè),第k名員工復制第ik<=i<=m)本書到第m本書,那么,所有員工復印書籍的最小時間就為第k名員工所需的時間以及前k-1名員工復制前i-1本書所需最小時間的較大的那個時間。這樣,問題的規(guī)模就從k個員工復印m本書減小到了k-1個員工復印i-1本書,而且求解過程中會不斷遇到前a個員工復印前b本書的最小時間。為了減小問題的規(guī)模以及記錄重復子問題的解,就可以用DP

            但僅僅算出最小時間的不夠的,還要給出分配的方案,這個稍微有點繁瑣。因為題目中說,如果有多種最優(yōu)的分配方案,應該讓前面的員工分配的頁數(shù)盡量少。那么,可以從后推,在當前的員工所復印的書籍頁數(shù)沒有超過最大頁數(shù)的情況下,讓其復印的頁數(shù)最大化。如果超過了最大頁數(shù),就把這本書分配給前一名員工。最后再按順序?qū)⒎峙浣Y(jié)果輸出出來。

             

            代碼:

            #include <cstdio>

            #include <climits>

            #include <cstring>

             

            const int MAX = 505;

            int book[MAX];

            __int64 total[MAX];                        //1~n本書的頁數(shù)

            int k, m;

            __int64 f[MAX][MAX];                  //f[i][j] = k 表示前i個人復制前j本書所需最少時間是k

            __int64 max;

            void Input ()

            {

                            scanf("%d%d", &m, &k);

                            int i;

                            for (i=1; i<=m; i++)

                                            scanf("%d", &book[i]);

            }

             

            __int64 Sum (int s, int e)                                               //s本書到第e本書的總頁數(shù)

            {

                            return (total[e] - total[s-1]);

            }

             

            __int64 Max (__int64 a, __int64 b)

            {

                            return ( a>b?a:b );

            }

             

            __int64 Min (int x, int y)                                //x個人復制前y本書所需的最少時間        x<=y

            {

            //考慮特殊情況

                            if ( f[x][y] != -1 )

                                            return f[x][y];

                            if ( y == 0 )

                                            return ( f[x][y] = 0 );

                            if ( x == 0 )

                                            return ( f[x][y] = INT_MAX );

             

                            int i;

                            __int64 temp;

                            f[x][y] = INT_MAX;

                            for (i=x-1; i<y; i++)

                            {

            //x個人復制第i+1到第y本書與前x-1個人復制前i本書的時間較大的時間

                                            temp = Max( Min(x-1, i), Sum(i+1, y) );                 

                                            if ( temp < f[x][y] )

                                            {

                                                            f[x][y] = temp;

                                            }

                            }

                            return f[x][y];

            }

             

            void Output ()

            {

                            int i, p;

                            __int64 temp;

                            int slash[MAX];

                            max = f[k][m];

                            memset(slash, 0, sizeof(slash));

                            temp = 0;

                            p = k;

                            for (i=m; i>0; i--)

                            {

                                            //讓后面的員工盡量復印最多的書籍

                                            if ( temp + book[i] > max || i < p )

                                            {

                                                            slash[i] = 1;

                                                            temp = book[i];

                                                            p --;

                                            }

                                            else

                                            {

                                                            temp += book[i];

                                            }

                            }

             

                            for (i=1; i<=m; i++)

                            {

                                            printf("%d", book[i]);

                                            if ( slash[i] == 1 )

                                                            printf(" / ");

                                            else if ( i != m )

                                                            printf(" ");

                            }

                            printf("\n");

            }

             

            void Solve ()

            {

                            int i, j;

                            //預處理書籍頁數(shù)的和

                            total[0] = 0;

                            for (i=1; i<=m; i++)

                                            total[i] = total[i-1] + book[i];

             

                            memset(f, -1, sizeof(f));

                           

                            Min(k, m);

                           

                            Output();

            }

             

            int main ()

            {

                            int test;

                            scanf("%d", &test);

                            while ( test-- )

                            {

                                            Input ();

                                            Solve ();

                            }

             

                            return 0;

            }

             

             

            程序分析與心得:

            時間復雜度O(n2),空間復雜度O(n2)

            在用記憶化搜索解決DP問題時,往往比較符合人的思維,容易想到模型,編程比較簡單。在解題過程中,除了可以按照常理順著推,也可以嘗試逆向思維,從最后的狀態(tài)倒著推,這樣可以使問題想得更加透徹,有比較好的效果。

            posted on 2008-03-10 15:11 quxiao 閱讀(551) 評論(0)  編輯 收藏 引用 所屬分類: ACM
            久久久久亚洲AV无码专区桃色| 国产99久久精品一区二区| 国产毛片久久久久久国产毛片| 国产精品99久久久久久董美香| 久久无码AV中文出轨人妻| 97精品国产97久久久久久免费 | 午夜精品久久久内射近拍高清| 午夜精品久久久久久久无码| 亚洲精品乱码久久久久久自慰| 久久免费美女视频| 久久只这里是精品66| 久久se精品一区二区| 国产偷久久久精品专区| 国产精品午夜久久| 国内精品久久久久久99蜜桃| 中文字幕精品久久| 2020最新久久久视精品爱| 777午夜精品久久av蜜臀| 久久精品成人免费国产片小草| 一本色道久久88精品综合| 热久久国产欧美一区二区精品| 99久久精品毛片免费播放| 国产精品成人久久久| 婷婷久久综合九色综合绿巨人| 99久久精品九九亚洲精品| 久久久国产精品福利免费| 99久久免费国产精品热| 久久精品国产亚洲AV麻豆网站| 久久久无码精品亚洲日韩京东传媒 | 久久精品黄AA片一区二区三区| 亚洲国产精品无码久久青草| 久久精品视频91| 夜夜亚洲天天久久| 麻豆精品久久久一区二区| 久久国产精品一区二区| 丁香狠狠色婷婷久久综合| 国内精品久久人妻互换| 国内精品伊人久久久久AV影院| 97久久精品人妻人人搡人人玩| 国产成人久久激情91| 亚洲国产精品久久久久久|