• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Ball Tracking / Detection using OpenCV

            https://anikettatipamula.blogspot.jp/2012/12/ball-tracking-detection-using-opencv.html

            Ball Tracking / Detection using OpenCV

               Ball detection is pretty easy on OpenCV. So to start with lets describe what steps we will go through.

                                   LINK TO THE CODE




            1.Load an image / start a video capture




            2.Convert image from RGB space to HSV space . HSV(hue saturation value) space gives us better results while doing color based segmentation.
            3.Seperate Image into its 3 component images(i.e H  S  V each of which is a one dimensional image or intensity image)
            H component
            S component

            V component

            4.Use a condition for intensity values in the image and get a Binary image.
              i.e let say we taken H intensity image .If our ball is red color .Then in this image we will find that the values of the pixel where the ball is present , lies in a specific range. so we define a condition for every pixel . if                                (pixel > threshold_min & pixel  )= pixel of o/p image is 1 else it is zero.

            NOTE:
            FOR THE PURPOSE OF CALIBRATION WE HAVE 2 SLIDERS ON EACH COMPONENT IMAGE TO SET THE LOWER AND UPPER LIMIT OF PIXEL VALUES.

            H component after condition


            We do this for all components i.e for S and V.


            S component after condition
            V component after condition
            5.Now we have three binary images( only black and only white) . Which has the region of ball as 1's and every thigh else which has the intensity values greater(less) than threshold .The pixels that do not pass this conditions will be zero.


            6.We then combine all the above three Binary images (i.e we AND them all). All the pixels that are white in the three images will be white in the output of this step.So there will be regions too which will have 1's but with lower areas and of random shapes.
            Combined image
            7.Now we use houghs transform on the output of last operation to find the regions which are circular in shape.

            8.Then we draw the marker on the detected circles as well as display the center and radius of the circles





            posted on 2017-08-29 09:19 zmj 閱讀(537) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            色99久久久久高潮综合影院| 韩国三级大全久久网站| 日韩精品无码久久一区二区三| 色诱久久av| 99久久99久久精品免费看蜜桃| 久久国产精品-国产精品| 久久有码中文字幕| 久久青青草原亚洲av无码app | 国产精品久久久久久久久久影院| 97久久国产综合精品女不卡| www.久久精品| 亚洲国产精品无码久久一线| 久久99精品国产99久久6| 精品伊人久久大线蕉色首页| 青青热久久综合网伊人| 国内精品伊人久久久久777| 99久久国产亚洲高清观看2024 | 色播久久人人爽人人爽人人片aV| 精品久久人妻av中文字幕| 亚洲国产精品无码久久青草| 99久久精品国产一区二区三区| 99久久精品免费看国产一区二区三区 | 99久久无色码中文字幕人妻| 久久久久亚洲AV无码专区桃色| 久久人人爽人人爽人人片AV不| 亚洲国产香蕉人人爽成AV片久久| 99久久精品国产毛片| 91精品国产色综合久久| 国内精品久久久人妻中文字幕| 亚洲欧美伊人久久综合一区二区| 亚洲七七久久精品中文国产| 国产精自产拍久久久久久蜜 | 天天综合久久一二三区| 久久国产精品波多野结衣AV| 久久精品国内一区二区三区| 潮喷大喷水系列无码久久精品| 久久精品国产网红主播| 久久精品国产亚洲av日韩| 久久亚洲国产成人精品性色| 日本久久久久亚洲中字幕| 国内精品久久久久影院一蜜桃 |