• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Ball Tracking / Detection using OpenCV

            https://anikettatipamula.blogspot.jp/2012/12/ball-tracking-detection-using-opencv.html

            Ball Tracking / Detection using OpenCV

               Ball detection is pretty easy on OpenCV. So to start with lets describe what steps we will go through.

                                   LINK TO THE CODE




            1.Load an image / start a video capture




            2.Convert image from RGB space to HSV space . HSV(hue saturation value) space gives us better results while doing color based segmentation.
            3.Seperate Image into its 3 component images(i.e H  S  V each of which is a one dimensional image or intensity image)
            H component
            S component

            V component

            4.Use a condition for intensity values in the image and get a Binary image.
              i.e let say we taken H intensity image .If our ball is red color .Then in this image we will find that the values of the pixel where the ball is present , lies in a specific range. so we define a condition for every pixel . if                                (pixel > threshold_min & pixel  )= pixel of o/p image is 1 else it is zero.

            NOTE:
            FOR THE PURPOSE OF CALIBRATION WE HAVE 2 SLIDERS ON EACH COMPONENT IMAGE TO SET THE LOWER AND UPPER LIMIT OF PIXEL VALUES.

            H component after condition


            We do this for all components i.e for S and V.


            S component after condition
            V component after condition
            5.Now we have three binary images( only black and only white) . Which has the region of ball as 1's and every thigh else which has the intensity values greater(less) than threshold .The pixels that do not pass this conditions will be zero.


            6.We then combine all the above three Binary images (i.e we AND them all). All the pixels that are white in the three images will be white in the output of this step.So there will be regions too which will have 1's but with lower areas and of random shapes.
            Combined image
            7.Now we use houghs transform on the output of last operation to find the regions which are circular in shape.

            8.Then we draw the marker on the detected circles as well as display the center and radius of the circles





            posted on 2017-08-29 09:19 zmj 閱讀(543) 評論(0)  編輯 收藏 引用

            久久精品国产亚洲综合色| 国产精品伊人久久伊人电影| 国产精品美女久久福利网站| 无码精品久久久久久人妻中字| 日日躁夜夜躁狠狠久久AV| 久久久这里有精品中文字幕| 日韩精品久久久久久免费| 亚洲AV无码久久精品色欲| 老男人久久青草av高清| 国产女人aaa级久久久级| 久久久久久国产精品美女| 91精品国产9l久久久久| 精品无码久久久久久久久久 | 久久综合亚洲欧美成人| 欧美国产精品久久高清| 久久综合狠狠综合久久综合88| 超级97碰碰碰碰久久久久最新| 成人午夜精品久久久久久久小说| 波多野结衣AV无码久久一区| 国内精品久久久久影院日本| 国内精品久久久久久久97牛牛| 无码人妻久久一区二区三区| 久久精品国产半推半就| 99久久免费国产精品特黄| 色偷偷久久一区二区三区| 国产精品久久久99| 久久国产精品久久| 99久久国产综合精品成人影院| 久久亚洲国产午夜精品理论片| 久久国产综合精品五月天| 99久久超碰中文字幕伊人| 无遮挡粉嫩小泬久久久久久久| 久久久久久av无码免费看大片| 亚洲中文字幕无码久久2017 | 久久久久久国产精品无码下载| 国产亚洲综合久久系列| 亚洲精品无码久久久久sm| 久久人人爽人人爽人人片AV高清 | 亚洲第一极品精品无码久久| 国产精品狼人久久久久影院| 久久国产热这里只有精品|